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FOREWORD 

The US.  Environmental Protection Agency (EPA) has developed the Data Quality 
Objectives (DQO) Process as an important tool for project managers and planners to 
determine the type, quantity, and quality of data needed to support Agency decisions. This 
guidance is the culmination of experiences in applying DQOs in different Program Ofices at 
the EPA. Many elements of prior guidance, advice, statistics, and scientific planning have 
been incorporated into this document. This guidance supersedes all previous guidance, 
including the EPA's "Development of Data Quality Objectives, Description of Stages I and, 
11" (July 1986), and "Guidance for Planning for Data Collection in Support of Environmental 
Decision Making Using the Data Quality Objectives Process'' (Interim Final, October 1993). 
This document is consistent with the Office of Emergency and Remedial Response guidance, 
"Data Quality Objectives for Superfund" (EPA 540-R-93-07 1). 

The purpose of this document is to provide general guidance to organizations on 
developing data quality criteria and performance specifications for decision making. This 
guidance assumes that an appropriate Quality System has been established and is operational. 

This guidance has been prepared in response to EPA Order 5360.1, entitled "Policy 
and Program Requirements to Implement the Quality Assurance Program," which establishes 
requirements for quality assurance when generating environmental data in support of Agency 
decisions. In addition, this guidance reflects the policy of the Agency to develop and 
implement the DQO Process as expressed by Deputy Administrator A. James Barnes in his 
memorandum on "Agency Institutionalization of Data Quality Objectives," dated November 
1986. 

This document is a product of the collaborative effort of many quality management 
professionals throughout the EPA and among the contractor community. It has been peer 
reviewed by the EPA Program Offices, Regional Offices, and Laboratories. Many valuable 
comments and suggestions have been incorporated to make it more useful. 

EPA QNG-4 
.. 
11 September I994 



Table of Contents 

Chapter 

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ii 

List of Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1 . Step 1: StatetheProbl. em . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

2 . Step 2: Identify the Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

3 . Step 3: Identify the Inputs to the Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

4 . Step 4: Define the Boundaries of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

5 . Step 5 :  Develop a Decision Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

6 . Step 6: Specify Tolerable Limits on Decision Errors . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

7 . Step 7: Optimize the Design for Obtaining Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

Appendices 

A . Beyond the DQO Process: The Quality Assurance Project Plan and 
Data Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

B . DQO Case Study: Cadmium-Contaminated Fly Ash Waste . . . . . . . . . . . . . . . . . . . . .  47 

C . Derivation of Sample Size Formula for Testing Mean of Normal 
Distribution Versus an Action Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 

D . GlossaryofTerms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 

EPA QNG-4 
... 
111 September I994 



List of Figures 
a 

0- 1 . The Data Quality Objectives Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

0.2 . Repeated Application of the DQO Process Throughout the- 
Life Cycle of a Single Project . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . .  5 

2- 1 . Example of Multiple Decisions Organized Into a Flowchart . . . . . . . . . . . . . . . . . . . . . . .  16 

4- 1 . .An Example of How to Stratify a Site With Soil Contamination . . . . . . . . . . . . . . . . . .  22 

6- 1 . An Example of a Decision Performance Goal Diagram - 
Baseline Condition: Parameter Exceeds Action Level . . . . . . . . . . . . . . . . . . . . . . . . .  35 

6.2 . An Example of a Decision Performance Goal Diagram - 
Baseline Condhon: Parameter is Less Than Action Level . . . . . . . . . . . . . . . . . . . . . .  36 

7- 1 . An Example of a Power Curve - 
Baseline Condition: Parameter is Less Than Action Level . . . . . . . . . . . . . . . . . . . . . . .  40 

A.1 . QA Planning and the Data Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

A.2 . Quality Assurance Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

B- 1 . Design Performance Goal Diagram for Cadmium Compliance Testing - 
Baseline Codtion:  Mean Exceeds Action Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

List of Tables 

1 . 1 . Elements of the Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

5- 1 . Attributes of Different Statistical Parameters to Characterize the Population . . . . . . .  25 

6.1 . 

6.2 . 

Decision Error Limits Table Corresponding to Figure 6-1 

Decision Error Limits Table Corresponding to Figure 6-2 

. . . . . . . . . . . . . . . . . . . . . .  35 

. . . . . . . . . . . . . . . . . . . . . .  36 

I P A  QAIG-4 i v  September 1994 

5 



INTRODUCTION 

Each year the US. Environmental Protection Agency (EPA) and the regulated 
coinmunity spend approximately $5 billion collecting environmental data for scientific 
research, regulatory decision making, and regulatory compliance. While these activities are 
necessary for effective environmental protection, it is the goal of EPA and the regulated 
community to minimize expenditures related to data collection by eliminating unnecessary, 
duplicative, or overly precise data. At the same time, the data collected should have 
sufficient quality and quantity to support defensible decision making. The most efficient way 
to accomplish both of these goals is to establish criteria for defensible decision making before 
the study begins, and then develop a data collection design based on these criteria. To 
facilitate this approach, the Quality Assurance Management Staff (QAMS) of EPA has 
developed the Data Quality Objectives (DQO) Process, a systematic planning tool based on 
the Scientific Method for establishing criteria for data quality and for developing data 
collection designs. By using the DQO Process to plan environmental data collection efforts, 
EPA can improve the effectiveness, efficiency, and defensibility of decisions in a resource- 
effective manner. 

What are DQOs? DQOs are qualitative and quantitative statements derived from the outputs 
of the fkst six steps of the DQO Process that: 

1) Clarify the study objective; 

2) 

3) 

Define the most appropriate type of data to collect; 

Determine the most appropriate conditions from which to collect the data; and 

4) Specify tolerable limits on decision errors which will be used as the basis for 
establishing the quantity and quality of data needed to support the decision. 

The DQOs are then used to develop a scientific and resource-effective data collection design. 

What is the DQO Process? The DQO Process is a strategic planning approach based on the 
Scientific Method that is used to prepare for a data collection activity. It provides a 
systematic procedure for defining the criteria that a data collection design should satisfy, 
including when to collect samples, where to collect samples, the tolerable level of decision 
errors for the study, and how many samples to collect. 

By using the DQO Process, the Agency will assure that the type, quantity, and quality 
of environmental data used in decision making will be appropriate for the intended 
application. In addition, the Agency will guard against committing resources to data 
collection efforts that do not support a defensible decision. 

EPA QNG-4 1 September 1994 



The DQO Process consists of seven steps, as shown in Figure 0- 1. The output from 
each step influences the choices that will be made later in the Process. Even though the DQO 
Process is depicted as a linear sequence of steps, in practice it is iterative; the outputs from 
one step may lead to reconsideration of prior steps. This iteration should be encouraged since 
it will ultimately lead to a more efficient data collection design. During the first six steps of 
the DQO Process, the planning team will develop the decision performance criteria (DQOs) 
that will be used to develop the data collection design. The final step of the Process involves 
developing the data collection design based on the DQOs. The first six steps should be 
coiiipleted before the planning team attempts to develop the data collection design because 
this final step is dependent on a clear understanding of the first six steps taken as a whole. .In 
Figure 0-1, the iterative link between the DQOs and the Optimize the Design step is 
illustrated by double arrows, which signify that it may be necessary to revisit any one or 
more of the first six steps to develop a feasible and appropriate data collection design. Above 
all, every step should be completed before data collection begins. 

EPA QNG4 

Identify the Decision 

Identify Inputs to the Decision 

Define the Study Boundaries 

Optimize the Design for Obtaining Data 

Figure 0-1. The Data Quality Objectives Process. 
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Each of the seven steps is described briefly below. A more detailed description can be found in 
the subsequent chapters of this guidance. 

Step 1 : State the Problem - Concisely describe the problem to be studied. 
Review prior studies and existing infomiation to gain a sufficient understanding to 
define the problem. 

Step 2: Identify the Decision - Identify what questions the study will attempt 
to resolve, and what actions may result. 

Step 3: Identify the Inputs to the Decision - Identify the information that needs 
to be obtained and the measurements that need to be taken to resolve the decision 
statement. 

Step 4: Define the Study Boundaries - Specify the time periods and spatial 
area to which decisions will apply. Determine when and where data should be 
collected. 

Step 5: Develop a Decision Rule - Define the statistical parameter of interest, 
specifi the action level, and integrate the previous DQO outputs into a single 
statement that desc-bes the logical basis for choosing among alternative actions. 

Step 6: Specifv Tolerable Limits on Decision Errors 
maker's tolerable decision error rates ' based on a consideration of the 
consequences of making an incorrect decision. 

Step 7: Optimize the Desinn - Evaluate information from the previous steps 
and generate alternative data collection designs. Choose the most resource- 
effective design that meets all DQOs. 

- Define the decision 

Who should read the DQO guidance? This guidance is intended for project managers and 
other members of a planning team that will use the DQO Process to structure the data 
collection planning process and to develop an appropriate data collection design. In addition, 
the guidance may be relevant to other staff members who will participate in the study. 
Consult with an EPA Quality Assurance Manager, Quality Assurance Officer, or Quality 
Assurance Representative to obtain additional advice on who should read this guidance. 

' A decision error rate is the probability of making an incorrect decision based on data that inaccurately 
estimate the true state of nature. 
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What projects are covered by this guidance? 
where: 

This guidance document covers all projects 

1 ) the objective of the study is to collect environmental data in support of an Agency 
program, and 

2) the results of the study will be used to make a specific decision. 

Every step of this guidance may not be applicable to data collection activities where specific 
decisions cannot be identified, such as studies that are exploratory in nature. The reason fcu 
this distinction is that part of the DQO Process includes formulating statistical hypotheses. If 
a statistical hypothesis is not linked to a clear decision in which the decision maker can 
identi@ potential consequences of making a decision error, then some of the activities 
reconmiended in this guidance may not apply. Nonetheless, the DQO Process is still a 
valuable tool that can be used to help plan studies where the data are not directly used to 
support a specific decision. In these cases, it may be possible to frame a research type study 
question in the form of a decision or modify the activities described in thls guidance to 
address the needs of the study. 

What is the value of using the DQO Process? 

The DQO Process is a planning tool that can save resources by making data 
collection operations more resource-effective. Good planning will streamline the 
study process and increase the likelihood of efficiently collecting appropriate and 
useful data. 

0 The structure of the DQO Process provides a convenient way to document 
activities and decisions and to communicate the data collection design to others. 

The DQO Process enables data users and relevant technical experts to participate 
in data collection planning and to specify their particular needs .prior to data 
collection. The DQO process fosters communication among all participants, one 
of the central tenets of quality management practices. 

0 The DQO Process provides a method for defining decision performance 
requirements that are appropriate for the intended use of the data. This is done by 
considering the consequences of decision errors and then placing tolerable limits 
on the probability that the data will mislead the decision maker into committing a 
decision error. A statistical sampling design can then be generated to provide the 
most efficient method for controlling decision errors and satisfying the DQOs. 

The DQO Process helps to focus studies by encouraging data users to clarify 
vague objectives and to limit the number of decisions that will be made. 
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When should the DQO Process be used? The DQO Process should be used during the 
planning stage of any study that requires data collection, before the data are collected. In 
general, EPA's policy is to use the DQO Process to plan all data collection efforts that will 
require or result in a substantial commitment of resources. The Quality Management Plans 
(QMPs) ofthe Agency's National Program Offices, Regional Offices, and Research and 
Development organizations will specify which studies require DQOs. 

Can the DQO Process be used for small studies? The DQO Process applies to any study, 
regardless of its size. However, the depth and detail of DQO development will depend on the 
complexity of the study. The more complex a study, the more lkely that it will have several 
decisions that could benefit from the DQO Process and that the decisions will require more 
intensive DQO development. 

Should the DQO Process be applied as intensively to all situations? 
is a flexible planning tool that can be used more or less intensively as the situation requires. 
For projects that have multiple decisions, where the resolution of one decision only leads to 
the evaluation of subsequent decisions, the DQO Process can be used repeatedly throughout 
the life cycle of a project. Often, the decisions that are made early in the project will be 
preliminary in nature. They might require only a limited planning and evaluation effort. As 
the study nears conclusion and the possibility of making a decision error becomes more 
critical, however, the level of effort needed to resolve a decision generally will become 
greater. Figure 0-2 illustrates this point. 

No, the DQO Process 

e 

INCREASING LEVEL OF EVALUATION EFFORT 

Figure 0-2. Repeated Application of the DQO Process Throughout the Life Cycle of a 
Single Project. 

L 
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Who participates in the DQO Process? 
program staff, technical experts, senior managers, someone' with statistical expertise, and a 
Quality Assurance (QA)/Quality Control (QC) advisor, such as a QA Manager. It is 
important that all of these people, including managers, participate (or stay informed) from the 
beginning of the DQO Process so that it can proceed efficiently. 

A DQO planning team generally consists of senior 

What are the outputs of the DQO Process? 
a quantitative and qualitative framework for a study. Each step of the Process derives 
valuable criteria that will be used to establish the final data collection design. The first five 
steps of the DQO Process identify mostly qualitative criteria such as what problem has 
initiated the study and what decision it attempts to resolve. They also define the type of data 
that will be collected, where and when the data will be collected, and a decision rule that 
defines how the decision will be made. The sixth step defines quantitative criteria expressed 
as limits on decision errors that the decision maker can tolerate. The final step is used to 
develop a data collection design based on the criteria developed in the first six steps. The 
final product of the DQO Process is a data collection design that meets the quantitative and 
qualitative needs of the study. 

The DQO Process leads to the development of 

Much of the information that is developed in the DQO Process will also be use l l  for 
the development of Quality Assurance Project Plans (QAPPs) and the implementation of the 
Data Quality Assessment (DQA) Process. The outputs of the DQO Process can be used 
directly and indirectly as inputs to a QAPP. To evaluate the data using the DQA Process, it 
is necessary to have first established decision quality criteria using the DQO Process or its 
equivalent. Therefore, the DQO Process not only helps plan a study, establish decision 
quality criteria, and develop a data collection design, but it also aids in the development of 
QAPPs and the DQA Process. 

What is a data collection design? A data collection design specifies the final configuration 
of the environmental monitoring or measurement effort required to satisfy the DQOs. It 
designates the types and quantities of samples or monitoring information to be collected; 
where, when, and under what conditions they should be collected; what variables are to be 
measured; and the QNQC procedures to ensure that sampling design and measurement errors 
are controlled sufficiently to meet the tolerable decision error rates specified in the DQOs. 
These QNQC procedures are established in the QAPP. 

Where does the DQO Process fit into EPA's Quality System? The DQO Process is the 
part of the Quality System that provides the basis for linking the intended use of the data to 
the QNQC requirements for data collection and analysis. This document is one of a series of 
quality management requirements and guidance documents that the U.S. EPA Quality 
Assurance Management Staff (QAMS) has prepared to assist users in implementing the 
Agency-wide Quality System. The current document list contains: 

EPA QA/R-1 EPA Quality System Requirements for Environmental Programs 

EPA QA/G-1 Guidance for Developing, Implementing, and Evaluating Quality Systems for 
Environmental Programs 
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EPA QA/R-2 EPA Requirements for Quality Management Plans 

EPA QdG-2 Guidance for Preparing Quality Management Plans for Environnzental 
Programs . 

EPA QdG-4 Guidance for The Data Quality Objectives Process 

EPA QA/R-5 EPA Requirements for Quality Assurance Project Plans for Environniental 
Data Operations 

EPA QdG-5  Guidance for Quality Assurance Project Plans 

EPA QA/G-9 Guidance for Data Quality Assessments 

Agency policy statements are found in the requirements documents (QA/R-xx series). 
Advisory papers are found in the guidance documents (QNG-xx series). 

Can existing data be used to support decisions using the DQO Process? 
be very useful for supporting decisions using the DQO Process. There are three ways that 
existing data can be used: 

Existing data can 

1) If sufficient documentation is available, existing data may be used alone or 
combined with new data. Determining whether data can appropriately be 
combined can be a very complex operation that should be undertaken with great 
care. In many cases it will require the expertise of a statistician. 

2) The existing data may provide valuable information (such as variability) that can 
be used in the development of the data collection design. 

3)  The existing data may be useful in guiding the selection of an efficient data 
collection design. 

Will the use of the DQO Process always result in statisticaVprobabilistic sampling 
methods for data collection? No. While statistical methods for developing the data 
collection design are strongly encouraged, this guidance recognizes that not every problem 
can be evaluated using probabilistic techniques. The DQO Process, however, can and should 
be used as a planning tool for studies even if a statistical data collection design ultimately 
will not be used. In these cases, the planning team is encouraged to seek expert advice on 
how to develop a non-statistical datacollection design and on how to evaluate the result of 
the data collection. When non-probabilistic, judgemental, or quota sampling methods are 
used, be sure to consult with an EPA QA Manager, QA Oficer, or QA Representative to 
ensure that program-specific QA requirements are satisfied. 

How should this guidance be used? This guidance should be used as a tool to structure the 
planning activities for collecting environmental data. It should be used to organize meetings, 
focus the collection of background information, and facilitate communication between 
technical experts, program managers, and decision makers. 
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How is this guidance structured? %s guidance contains seven chapters, four appendces, 
and a bibliography. Each of the remaining chapters describes one of the seven steps of the 
DQO Process. Each chapter is divided into four sections as follows: 

(1) PurDose - This section explains the objective of the chapter. 

(2) Expected Outputs - This section identifies the products expected upon completion 
of the DQO Process step. 

( 3 )  Backeround - This section provides background information on the DQO Process 
step, including the rationale for the activities in that step. 

(4) Activities - This section describes the activities recommended for completing the 
DQO Process step, including how inputs to the step are used. 

Appendix A provides a brief overview of both the Quality Assurance Project Plan 
(QAPP) development process, which is used to document the operational and QNQC 
procedures needed to implement the data collection design, and the Data Quality Assessment 
(DQA) Process, which is used after the data have been collected to evaluate whether the 
DQOs have been satisfied. Appendix B is a case study in which the DQO Process is applied 
to an environmental problem. Appendix C provides a derivation of the sample size formula 
used in Appendix B. Appendix D provides a glossary of terms used in this guidance. 

Where is it possible to get statistical support? 
through the EPA Quality Assurance Management Staff (QAMS) at (202) 260-5763. 

Access to statistical support is available 

How long will this guidance be in effect? 
from the publication date, unless superseded by an updated version. 

This guidance will remain in effect for five years 

Where is it possible to get more information about the DQO Process? 
course is available through the EPA at the U.S. EPA Headquarters in Washington, D.C. 
Additional documents on DQO applications can be obtained from the Quality Assurance 
Management Staff at EPA Headquarters. 

A DQO training 

Two documents that can provide additional detail on the DQO Process are: 

0 U.S. Environmental Protection Agency. 1993. Data Quality Objectives Process 
for Superfund: Interim Final Guidance . EPA 540-R-93-07 1. 

Bates, D.J., R.O. Gilbert, N.L. Hassig, R.F. OBrien, B.A. Pulsipher, 1993. 
Decision Performance Criteria: The Driver Behind The Data Quality Objectives 
Process - A Statistical Introduction (Draft). Pacific Northwest Laboratory, 
Richland, Washington. 
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CHAPTER 1 

STEP 1: STATE THE PROBLEM 

THE DATA QUALITY OBJECTIVES PROCESS 

State the Problem 
I 

I ken t i f y  the Decision I 

I Identify I n p u t h h e  Decision I 

I Define the Study Bound%s I 

I Develop a Decision Rule I 

- 

\ 
I Optimize the Design for Obtaining Data I 

STATE THE PROBLEM 

Purpose 

To clearly define the problem so that the 
focus of the study will be unambiguous. 

Activities 

Identify members of the planning team 

Identify the primary decision maker. 

Develop a concise description of the problem. 

Specify available resources and relevant 
deadlines for the study. 

The purpose of this step is to define the problem so that the focus of the study will be 
unambiguous. 

A list of the planning team members and identification of the decision maker. 

A concise description of the problem. 

A summary of available resources and relevant deadlines for the study. 
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Backmound 

The first step in any decision making process is to define the problem that has 
initiated the study. Since most environmental problems present a complex interaction of 
technical, economic, social, and political factors, it is critical to the success of the process to 
define the problem completely and in an uncomplicated format. A problem will have the 
greatest chance of being solved when a multidisciplinary team of technical experts and 
stakeholders can help to recognize all of the important facets of the problem and ensure that 
complex issues are described accurately. Generally teams will f ic t ion more effectively 
when they have one clearly identified decision maker. 

This step in the DQO Process addresses development of a planning team that will 
defme the problem and implement subsequent steps of the Process. It also calls for the 
identification of a decision maker who will lead the planning team and make final resolutions 
during the Process. The goal is to create a well-structured planning team that will work 
effectively and efficiently to develop a concise and complete description of the problem, 
which will provide the basis for the rest of the DQO development. 

Activities 

Identify members of the planning team. The planning team is the group that will develop 
DQOs for the study. The number of planning team members will be directly related to the 
size and complexity of the problem. The team should include representatives from all groups 
who are stakeholders in the project, including, but not limited to, samplers, chemists and other 
scientists and engineers, modelers, technical project managers, community representatives, 
administrative and executive managers, QNQC experts (such as a QA Manager), data users, 
and decision makers. A reasonable effort should be made to include any decision makers 
who may use the study findings later. A statistician (or someone knowledgeable and 
experienced with environmental statistical design and analysis) should also be included on this 
team. 

Identify the primary decision maker of the planning team and define each member’s 
role and responsibility during the DQO Process. 
referred to as the “decision maker.” The decision maker has the ultimate authority for 
making final decisions based on the recommendations of the planning team. The decision 
maker is often the person with the most authority over the study, and may be responsible for 
assigning the roles and responsibilities to the planning team members. In cases where the 
decision maker cannot attend DQO planning meetings, a senior staff member should keep the 
decision maker informed of important planning issues. 

The planning team generally has a leader, 
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Develop a concise description of the problem. 
background information on the fimdamental issue to be addressed by the study. Below is a 
list of steps that may be helphl during this phase of DQO development. 

The problem description provides 

0 Describe the conditions or circumstances that are causing the problem and the 
reason for understanding the study. Typical examples for environmental problems 
include conditions that may pose a threat to human health or the environment, and 
circumstances of potential non-compliance with regulations. 

0 Describe the problem as it is currently understood by briefly summarizing existing 
information. (See Table 1-1 for a list of elements that may be appropriate to 
include in the problem description.) 

0 Conduct literature searches and examine past or ongoing studies to ensure that the 
problem is correctly defined and has not been solved previously. Organize and 
review relevant information, including preliminary studies, and indicate the source 
and reliability of the information. Take note of information about the performance 
of sampling and analytical methods observed in similar studies since ths  
information may prove to be particularly valuable later in the DQO Process. 

0 If the problem is complex, consider breaking it into more manageable pieces. 
Identify those pieces that could be addressed by separate studies. Assign priorities 
to and logical relationships among the pieces of the problem. 

Specify the available resources and relevant deadlines for the study. 
anticipated budget, available personnel, and contractual vehicles (if applicable). Also, 
enumerate any deadlines for completion of the study and any intermediate deadlines that may 
need to be met. 

Stipulate the 
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Elements of the Problem Description 

The following elements may be appropriate to include in the problem description. 
Note: this list only provides the basic elements of the problem description. Your 
elements may be slightly different. 

0 Study objectiveshegulatory context. 

0 

, 

Persons or organizations involved in the study. 

0 Persons or organizations that have an interest in the study. 

0 Political issues surrounding the study. 

0 Sources and amount of funding. 

0 Previous study results. 

0 Existing sampling design constraints (some aspects of sampling design 
may be specified in regulations or established through past planning 
efforts) 

Table 1-1. Elements of the Problem Description 
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CHAPTER 2 

STEP 2: IDENTIFY THE DECISION 

THE DATA QUALITY OBJECTIVES PROCESS 

State the Problem I 
I I ,  

-- 

I Define the Studybqndaries I 

I Develop a Decision Rule p 

Specify Limits on Decision Errors 

W I  

Optimize the Design for Obtaining Data 

IDENTIFY THE DECISION 

Purpose 

To define the decision statement that the 
study will attempt to resolve. 

Activities 

Identify the principal study question. 

Define the alternative actions that could 
result from resolution of the principal study 
question. 

Combine the principal study question and the 
alternative actions into a decision statement. 

Organize multiple decisions. 

The purpose of this step is to define the decision statement that the study will attempt to 
resolve. 

' -  

e A decision statement that links the principal study question to possible actions 
that will solve the problem. 
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Background 

The goal of this step is to define the question that the study will attempt to resolve 
and identify the alternative actions that may be taken based on the outcome of the study. In 
the DQO Process the conibination of these two elements is called the decision statement or 
decision. The decision statement is critical for defining decision performance criteria later in 
the Process. 

The three activities in this chapter usually are most easily developed in the order that 
they appear. Sometimes, however, it is easier to identify alternative actions before the 
principal study question. In these cases, identify alternative actions that address the problem, 
then define the principal study question. 

In some cases, several decision statements are appropriate to address the problem 
under investigation. In these instances, the planning team should organize the decision 
statements in order of priority and identify the most logical and efficient sequence for 
analyzing and resolving them. If the principal study question is not obvious and specific 
alterative actions cannot be identified, then the study may fall in the category of exploratory 
research, in which case this step of the DQO Process may not be applicable. 

Activities 

Identify the principal study question. 
identify the principal study question and state it as specifically as possible. A specific 
statement of the principal study question narrows the search for information needed to address 
the problem. The principal study question identifies key unknown conditions or unresolved 
issues that reveal the solution to the problem being investigated. The following examples 
illustrate this point: 

Based on a review of the problem stated in Step 1, 

0 "Is the permittee out of compliance with discharge limits?" 

0 "Does the pollutant concentration exceed the National Ambient Air Quality 
Standard?" 

"Is the contaminant concentration significantly above background levels (which 
would indicate that a release has occurred)?" 

Note that, in each case, the answer to the principal study question will provide the basis for 
determining what course of action should be taken to solve the problem. 

EPA QNG-4 14 September I994 



Define the alternative actions that could result from resolution of the principal study 
question. Identify the possible actions that may be taken to solve the problem, including the 
alternative that does not require action. The types of actions considered will depend logically 
on the possible answers to the principal study question. These alternative actions forni the 
basis for defining decision performance criteria in Step 6:  Specify Tolerable Limits on 
Decision Errors. 

The following example illustrates how alternative actions are defined based on 
possible answers to the following principal study question: "Are the lead pellets that are fired 
by bird hunters and collect on the bottom of ponds contributing to the decrease in the duck 
population in Adelayed County?" Possible resolutions of the principal study question are 
1) the lead pellets are a factor in the decrease of the duck population, or 2) the lead pellets 
are not a factor in the duck population's decrease. If the lead is a contributing factor, the 
action may be to remove the lead from the bottom of the ponds and, at the same time, 
rebwlate the type of pellets that hunters may use in the future. If lead pellets are not found to 
contribute to a decrease in the duck population, then no action will be taken. 

Combine the principal study question and the alternative actions into a decision 
statement. Combine the alternative actions identified in the previous activity and the 
principal study question into a decision statement that expresses a choice among alternative 
actions. The following standard form may be helpful in drafting decision statements: 
"Determine whether or not [unknown environmental conditions/issues/criteria from the 
principal study question] require (or support) [taking alternative actions]." 

To illustrate the decision statement framing activity, consider the previous example. 
The principal study question is, "Are lead pellets on the bottom of ponds in Adelayed County 
contributing to the decrease in the duck population?", and the alternative actions are to 
"remediate the lead and regulate the use of lead pellets for hunting," or ''take no action." 
Therefore the decision statement is, "Determine whether or not lead pellets are contributing to 
the decrease in the duck population and require remediation and regulation." For a 
compliance monitoring problem, a decision statement that incorporates the principal study 
question and expresses a choice among alternative actions might be, "Determine whether or 
not the permittee is out of compliance with discharge limits and requires enforcement action." 

Organize multiple decisions. If several separate decision statements must be defined to 
address the problem, list them and identify the sequence in which they should be resolved. It 
may be usell to document the decision resolution sequence and relationships in a diagram or 
flowchart (see example in Figure 2-1). 
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Yes 

I 
Yes I 

Determine extent of unacceptable Investigate possible remedies - 
contamination 

i 

Choose remedy 

+ 
Apply remedy 

Figure 2-1. Example of Multiple Decisions Organized Into a Flowchart. 
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CHAPTER 3 

STEP 3: IDENTIFY THE INPUTS TO THE DECISION 

THE DATA QUALITY OBJECTIVES PROCESS 

State the Problem I , IDENTIFY INPUTS 
Purpose 

To identify the informational inputs that will be 
required to resolve the decision statement and 
determine which inputs require environmental 
measurements. I Identify Inputs to the Decision I 
Activities 

Identify the information that will be 
required to resolve the decision statement. 

Determine the sources for each item of 
information identified. 

Identify the information that is needed 
to establish the action level. 

\ Specify Limits on Decision Errors I Confirm that appropriate analytical 
methods exist to provide the necessary 
data. 

I Optimize the Design for Obtaining Data 

Purr>ose 
The purpose of this step is to identify the informational inputs that will be required to 

resolve the decision statement and determine- which inputs require environmental 
measurements. 

* A list of informational inputs needed to resolve the decision statement. 

A list of environmental variables or characteristics that will be measured. 
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Backmound 

To resolve most decision statements, it is necessary to collect data or information. In 
this step, the planning team identifies the dlfferent types of information that will be needed to 
resolve the decision statement. The key information requirements include the measurements 
that inay be required, the source of data or information (e.g., historic or new data), and the 
basis for setting the action level. Once the planning team has determined what needs to be 
measured, they will refine the specifications and criteria for these measurements in later steps 
of the DQO Process. 

Activities 

Identify the information that will be required to resolve the decision statement. 
Detennine which environmental variables or other infonnation are needed to resolve the 
decision statement. Consider whether monitoring or modeling approaches, or a combination 
of both, will be used to acquire the information. Based on the selected data acquisition 
approach, identify the types of information needed to support the decision statement. Ask 
general questions such as, "Is information on the physical properties of the media required?" 
or "Is information on the chemical characteristics of the matrix needed?" These types of 
questions and their answers help identify the information needs. In compliance monitoring 
for pollutants discharged into surface water, examples of environmental variables of interest 
may include levels of lead, silver, total suspended solids, or temperature measurements. 

Determine the sources for each item of information identified above. 
sources for the information needed to resolve the decision statement. These sources may 
include results of previous data collections, historical records, regulatory guidance, 
professional judgement, scientific literature, or new data collections. Next, qualitatively 
evaluate whether any existing data are appropriate for the study. Existing data will be 
evaluated quantitatively in Step 7: Optimize the Design for Obtaining Data. 

Identify and list the 

Identify the information that is needed to establish the action level. 
setting the action level. The action level is the threshold value which provides the criterion 
for choosing between alternative actions. Action levels may be based on regulatory 
thresholds or standards, or they may be derived from problem-specific considerations such as 
risk analysis. In this step, simply determine the criteria that will be used to set the numerical 
value. The actual numerical action level will be set in Step 5 :  Develop a Decision Rule. 

Define the basis for 

Confirm that appropriate measurement methods exist to provide the necessary data. 
Use the list of environmental measurements identified earlier in this step to develop a list of 
potentially appropriate measurement methods. Note the method detection limit and limit of 
quantitation for each potential method; ths  performance information will be used in steps 5 
and 7 of the DQO Process. 
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CHAPTER 4 

STEP 4: DEFINE THE BOUNDARIES OF THE STUDY 

THE DATA QUALITY OBJECTIVES PROCESS 

State the Problem 

Identify the Decision 

Define the Study Boundaries 

1.)' v m  

Optimize the Design for Obtaining Data 

DEFINE BOUNDARIES 
Purpose 

To define the spatial and temporal 
boundaries that are covered by the 
decision statement. 

Activities 

Specify the characteristics that define 
the population of interest. 

Define the geographic area 
within which all decisions must apply. 

When appropriate, divide the population into 
strata that have relatively homogeneous 
characteristics. 
Determine the timeframe to which the 
decision applies. 

Determine when to collect data. 
Define the scale of decision making. 

Identify any practical constraints , 

on data collection. 

PurDose 
The purpose of this step is to define the spatial and temporal boundaries of the problem. 

A detailed description of the spatial and temporal boundaries of the problem. 

Any practical constraints that may interfere with the study. 
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Background 

It is difficult to interpret data that have not been drawn from a well-defined 
population. The term "population" refers to the total collection or universe of objects or 
people to be studied, from which samples will be drawn. The purpose of this step is to 
define spatial and temporal components of the population that will be covered by the decision 
statement so that the data can be easily interpreted. These components include: 

0 Spatial boundaries that define the physical area to be studied and from where the 
samples should be taken, and 

Temporal boundaries that describe the timeframe the study data will represent and 
when the samples should be taken. 

The boundaries will be used to ensure that the data collection design incorporates the 
time periods in whch the study should be implemented, areas that should be sampled, and the 
time period to which the study results should apply. This will help ensure that the study data 
are representative of the population being studied. Defining boundaries before the data are 
collected can also prevent inappropriate pooling of data in a way that masks useful 
information. 

Practical constraints that could interfere with sampling should also be identified in this 
step. A practical constraint is any hinderance or obstacle that potentially may interfere with 
the full implementation of the data collection design. 

Activities 

Specify the characteristics that define the population of interest. 
characteristics that define the population. It is important to clearly define the attributes that 
make up the population by stating them in a way that makes the focus of the study 
unambiguous. For example, the population may be PCB concentrations in soil, lead 
concentrations in the blood of children under the age of seven, or hourly ozone concentrations 
within the metropolitan area. There may be several ways to define a population; always 
choose the one that is most specific. For example, "tetrachlorodibenzodioxin" is more 
specific than "dioxin," and ''hexavalent chromium" is more specific than "chromium". 

SpecifL the 

Define the spatial boundary of the decision statement. 

Define the geographic area to which the decision statement applies. The 
geographic area is a region distinctively marked by some physical features @e., 
volume, length, width, boundary). Some examples of geographic areas are the 
metropolitan city limits, the soil within the property boundaries down to a depth of six 
inches, or the natural habitat range of a particular animal species. 
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When appropriate, divide the population into strata that have relatively 
homogeneous characteristics. Using existing information, stratify or segregate the 
elements of the population into subsets or categories that exhibit relatively 
homogeneous properties or characteristics that may have an influence on the outcome 
of the study, such as contaninant concentrations, age, or height. Dividing the 
population into strata is desirable for studying sub-populations, reducing variability 
within subsets of data, or reducing the complexity of the problem by breaking it into 
more manageable pieces. See Figure 4-1 for an example of how to stratify a site with 
soil contamination. 

Define the temporal boundary of the problem. 

Determine the timeframe to which the decision applies. 
collect data over the full time period to which the decision will apply. Therefore the 
planning team should determine the timefi-ame that the data should reflect; for 
example, T h e  data will reflect the condition of contaminant leaching into ground 
water over a period of a hundred years," or "The data will be used to reflect the risk 
conditions of an average resident over their average length of residence which is 
estimated to be eight years." Timeframes should be defined for the overall population 
and any sub-populations of interest. 

It may not be possible to 

Determine when to collect data. Conditions may vary over the course of a study, 
which may affect the success of data collection and the interpretation of data results. 
These factors may include weather, temperature, humidity, or amount of sunlight and 
wind. Determine when conditions will be most favorable for collecting data and select 
the most appropriate time period to collect data that reflect those conditions. For 
example, a study to measure ambient airborne particulate matter may give misleading 
information if the sampling is conducted in the wetter winter months rather than the 
drier summer months. 

Define the scale of decision making. Define the smallest, most appropriate subsets of the 
population (sub-populations) for which decisions will be made based on the spatial or 
temporal boundaries. For example, in a study where the decision statement is, "Determine 
whether or not the concentration of lead in soil poses an unacceptable health risk to children 
and requires remediation", the geographic area is the top six inches of soil within the 
property boundaries, and the popuzation is the lead concentration in surface soil. The 
decision making could be set to an area which has a size that corresponds to the area where 
children derive the majority of their exposure (such as a play area or an average residential 
lot size if the future land use will be residential). Studying the site at this scale will be 
protective of children, a sensitive population in risk assessment. A temporal scale of decision 
making might be necessary for other types of studies. For example, in order to regulate water 
quality, it would be useful to set a scale of decision making that limits the time between 
sampling events. This would minimize the potential adverse effects in case the water quality 
was degraded between sampling events. 

scale of 
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Identify any practical constraints on data collection. 
that could potentially interfere with the f i l l  implementation of the data collection design, such 
as seasonal or meteorological conditions when sampling is not possible, the inability to gain 
site access or informed consent, or the unavailability of personnel, time, or equipment. For 
example, it may not be possible to take surface soil samples beyond the east boundaries of a 
site under investigation because permission had not been granted by the owner of the adjacent 
property. 

Identify any constraints or obstacles 

Forested 
Area 

(Stratum 1) 

Main 
Building 
and Grounds 
(Stratum 3) 

St ratification 

Drum 
Disposal 
Area 
(Stratum 2) 

Possible 
De- W a t e ri n g 
Treatment 
Area 
(Stratum 4, 

Forested Drum 
Area Disposal 

Area 

Possible 
Main De-Watering 
Building Treatment 
and Grounds Area 

Site A 

Site stratification based on current and past land use. 

Large stained area 
w/ pungent odor 

Visibly rusted 
55-gallon drums 

Large stained area 
w/ pungent odor 

(Stratum 3) ( 

Site B 

Site stratification based on site inspection or preliminary 
data. 

Figure 4-1. An Example of How to Stratify a Site with Soil Contamination. 
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CHAPTER 5 

STEP 5: DEVELOP A DECISION RULE 

THE DATA QUALITY OBJECTIVES PROCESS 

T S t a t e  the Problem I 

I Identify the Decision I 

Identify Inputs to the Dec' 'on E 2 2  I Define W t u d y  Boundaries I 

I Develop a Decision Rule I 

I Optimize the Design for Obtaining Data I 

DEVELOP A DECISION RULE 
PurDose 

To define the parameter of interest, 
specify the action level, and integrate previous 
DQO outputs into a single statement that 
describes a logical basis for choosing among 
alternative actions. 

Activities 

Specify the statistical parameter that 

Specify the action level for the study. 

Combine the outputs of the previous DO0 

characterizes the population. 

steps into an "if ... then ...' decision rule 
that defines the conditions that would 
cause the decision maker to choose 
among alternative actions. 

The purpose of this step is to define the parameter of interest, specify the action level, 
and integrate previous DQO outputs into a single statement that describes a logical basis for 
choosing among alternative actions. 

The statistical parameter (the parameter of interest) that characterizes the 
population. 

The action level. 

An "if. .. then. ..'I statement that defines the conditions that would cause the 
decision maker to choose among alternative actions. 
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Backcround 

The decision rule summarizes what attributes the decision maker wants to know about 
the population and how that knowledge would guide the selection of a course of action to 
solve the problem. The Decision Rule step combines criteria from past steps with the 
yurameter .of interest (statistical characteristic of the population) and the action level to 
provide a concise description of what action will be taken based on the results of the data 
collection. 

There are four main elements to a decision rule: 

The parameter of interest , a descriptive measure (such as a mean, median;sr 
proportion) that specifies the characteristic or attribute that the decision maker 
would like to know about the statistical population. The purpose of the data 
collection design is to produce environmental data that can be used to develop 
a reasonable estimate of the population parameter. 

The scale of decision making , the smallest, most appropriate subset (sub- 
population) for which separate decisions will be made. (The scale of decision 
making was defined in Step 4: Define the Boundanes of the Study.) 

The action level , a measurement threshold value of the parameter of interest 
that provides the criterion for choosing among alternative actions. The action 
level can be based on regulatory standards, an exposure assessment, technology 
based limits, or reference-based standards. 

The alternative actions, the actions that the decision maker would take, 
depending on the true value of the parameter of interest. (The alternative 
actions were identified in Step 2: Identify the Decision.) 

Specify the statistical parameter that characterizes the population (the parameter of 
interest). The planning team should specify the parameter of interest (such as the mean, 
median, or percentile) whose true value the decision maker would like know and that the data 
will estimate. For example, to determine if the contamination level at a given site exceeds an 
action level, the planning team must specify the parameter that will be evaluated with respect 
to the action level (e.g., the mean concentration). Some regulations specify the parameter, but 
if this is not the case, it may be necessary to consult with a statistician to help select a 
parameter that is consistent with the intended application. Recognize that the parameter that 
is chosen in this step may be changed to an equivalent descriptive measure as more 
information becomes available based on statistical considerations in Step 7 of the DQO 
Process and in the Data Quality Assessment Process. Information about positive and negative 
attributes of commonly used parameters is provided at the end of this chapter. 
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Specify the action level for the study. 
value that would cause himher to choose between alternative actions. For example, the 
decision maker would choose one action if the true value of the parameter of interest is above 
1 mg/L, and a different action otherwise. C o n f m  that the action level is greater than the 
detection and quantitation limits for the potential measurement methods identified in Step 3 : 
Identify the Inputs to the Decision. 

The decision maker should specify the numerical 

I Develop a decision rule. Develop a decision rule as an “i f... then ...” statement that 

action(s) that, would result from resolution of the decision. These four elements are combined 
in the following way: If the parameter of interest (e.g., true mean concentration of lead) 

incorporates the parameter of interest, the scale of decision making, the action level, and the 
I 

I 

within the scale of decision making (e.g., 1-acre plots) is greater than the action level 
( e g ,  1 m a g ) ,  then take alternative action A (e.g., remove the soil from the site); otherwise 
take alternative action B (e.g., leave the soil in place). For example, “If the true mean 
concentration of cadmium in the fly ash leachate within a container truck exceeds 1 .O mg/Kg, 
then the waste ash will be considered hazardous and will be disposed of in a RCRA 
hazardous waste landfill; otherwise, the waste ash will be lsposed of in a municipal landfill.” 
This statement is a functional decision rule that expresses what the decision maker ideally 
would like to resolve. It is not an operational decision rule which incorporates the decision 
maker’s tolerable limits on decision errors and the statistical hypothesis, and describes how 
the data will be summarized. The operational decision rule is developed during the Data 
Quality Assessment Process, after the data have been collected (see Appendix A). 

ll 
Attributes of Different Statistical Parameters 

II MEAN 

Positive Attributes 

0 Useful when action level is based on long-term, average health effects 
(chronic conditions, carcinogenicity). 

0 Useful when the population is uniform with relatively small spread. 
0 Generally requires fewer samples than other parameters. 

Negative Attributes 

0 Not a very representative measure of central tendency for highly skewed 
populations. 
Not usehl when the population contains a large proportion of values that are 
less than measurement detection limits. (continued) 

I1 
Table 5-1. Attributes of Different Statistical Parameters to 

Characterize the Population 
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Attributes of Different Statistical Parameters (continued) 

MEDIAN 

Positive Attributes 

0 

Useful when action level is based on long-term, average health effects (chronic 
conditions, carcinogenicity). 
Provides a more representative measure of central tendency than the mean for 
skewed populations. 
Useful when the population contains a large number of values that are less 
than measurement detection limits. 
Relies on few statistical assumptions. 

Negative Attributes 

0 Will not protect against the effect of extreme values. 
Not a very representative measure of central tendency for highly skewed 
populations. 

UPPER PROPORTIONlPERCENTILE 

Positive Attributes 

0 Use l l  for protection against extreme health effects. 
0 For highly variable populations, provides best control of the extreme values. 
0 Use l l  for skewed distributions. 
0 May be appropriate when the population contains a large number of values 

less than the measurement detection limit, as long as this limit is less than the 
action level. 
Relies on few statistical assumptions. 0 

Negative - Attributes 

Requires larger sample sizes than mean. 

Reference: US. Environmental Protection Agency. 1989. Methodsjbr Evaluation Attainment of Cleanup Stan'dardr: Volume I :  Soils 
and Solid Media. EPA 230/02-89442, Office of Policy Planning and Evaluation. 

Table 5-1. (cont.) Attributes of Different Statistical Parameters to 
Characterize the Population 
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CHAPTER 6 

STEP 6: SPECIFY TOLERABLE LIMITS ON DECISION ERRORS 

THE DATA QUALITY OBJECTIVES PROCESS 

State the Problem 

J 
Identify the Decision * 

I Identify Inputs to thdecision I 
I I 1 

I 1 I Define t h e j u d y  Boundaries I 
I I /evelop a Decision Rule I 

I Specify Limits on Decision Errors I 

/ 

_2_ 

Optimize the Design for Obtaining Data 

SPECIFY LIMITS 
ON DECISION ERRORS 

Purpose 

To specify the decision maker's tolerable limits 
on decision errors. 

Activities 

Determine the possible range of the 
parameter of interest. 

Identify the decision errors and choose the 
null hypothesis. 

Specify a range of possible parameter values 
where the consequences of decision errors 
are relatively minor (gray region). 

Assign probability values to points above and 
below the action level that reflect the 
tolerable probability for the 
occurrence of decision errors. 

The purpose of this step is to specify the decision maker's tolerable limits on decision 
errors, which are used to establish performance goals for the data collection design. 

The decision maker's tolerable decision error rates based on a consideration of 
the consequences of making an incorrect decision. 
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Backmound 

Decision makers are interested in knowing the true state of some feature of the 
environment. Since data can only estimate this state, decisions that are based on 
measurement data could be in error (decision error). Most of the time the correct decision 
will be made; however, this chapter will focus on controlling the less likely possibility of 
making a decision error. The goal of the planning team is to develop a data collection design 
that reduces the chance of making a decision error to a tolerable level. This step of the DQO 
Process will provide a mechanism for allowing the decision maker to defme tolerable linits 
on the probability of malung a decision error. 

There are two reasons why the decision maker cannot know the true value of a 
population parameter (Le., the true state of some feature of the environment): 

(1) The population of interest almost always varies over time and space. Limited 
sampling will m i s s  some features of this natural variation because it is usually 
impossible or impractical to measure every point of a population. Sampling 
design error occurs when the sampling design is unable to capture the 
complete extent of natural variability that exists in the true state of the 
environment. 

(2) Analytical methods and instruments are never absolutely perfect, hence a 
measurement can only estimate the true value of an environmental sample. 
Measurement error refers to a combination of random and systematic errors 
that inevitably arise during the various steps of the measurement process (for 
example, sample collection, sample handling, sample preparation, sample 
analysis, data reduction, and data handling). 

The combination of sampling design error and measurement error is called total study 
error, which may lead to a decision error. Since it is impossible to eliminate error in 
measurement data, basing decisions on measurement data will lead to the possibility of 
making a decision error. 

I 

The probability of decision errors can be controlled by adopting a scientific approach. 
In this approach, the data are used to select between one condition of the environment (the 
null hypothesis, H,) and an alternative condition (the alternative hypothesis, Ha). The null 
hypothesis is treated like a baseline condition that is presumed to be true in the absence of 
strong evidence to the contrary. This feature provides a way to guard against making the 
decision error that the decision maker considers to have the more undesirable consequences. 

A decision error occurs when the decision maker rejects the null hypothesis when it is 
true, or fails to reject the null hypothesis when it is false. These two types of decision errors 
are classified as false positive and false negative decision errors, respectively. They are 
described below. 
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False Positive Decision Error - A false positive decision error occurs when the null 
hypothesis (H ,,) is rejected when it is true. Consider an example where the decision maker 
presumes that a certain waste is hazardous (i.e., the null hypothesis or baseline condition is 
"the waste is hazardous"). If the decision maker concludes that there is insufficient evidence 
to classify the waste as hazardous when it truly is hazardous, then the decision maker would 
make a false positive decision error. A statistician usually refers to the false positive error as 
a "Type I" error. The measure of the size of this error is called alpha 
significanc.e, or the size of the critical region. 

( a ) ,  the level of 

False Negative Decision Error - A false negative decision error occurs when the 
null hypothesis is not rejected when it is false. In the above waste example, the false 
negative decision error occurs when the decision maker concludes that the waste is hazardous 
when it truly is not hazardous, A statistician usually refers to a false negative error as a 
"Type 11" error. The measure of the size of this error is called beta 
the complement of the power of a hypothesis test. 

(p) , and is also known as 

The definition of false positive and false negative decision errors depends on the 
viewpoint of the decision maker. ' Consider the viewpoint where a person has been presumed 
to be "innocent until proven guilty" (i.e., H 
error would be convicting an innocent person; a false negative error would be not convicting 
the guilty person. From the viewpoint where a person is presumed to be "guilty until proven 
innocent" (i.e., H is "guilty"; H a  is "innocent"), the errors are reversed. Here, the false 
positive error would be not convicting the guilty person, and the false negative error would be 
convicting the innocent person. 

is "innocent"; H a is "guilty"). A false positive 

While the possibility of a decision error can never be totally eliminated, it can be 
controlled. To control the possibility of making decision errors, the planning team must 
control total study error. There are many ways to accomplish this, including collecting a 
large number of samples (to control sampling design error), analyzing individual samples 
several times or using more precise laboratory methods (to control measurement error). 
Better sampling designs can also be developed to collect data that more accurately and 
efficiently represent the population of interest. Every study will use a slightly different 
method of controlling decision errors, depending on where the largest components of total 
study error exist in the data set and the ease of reducing those error components. Reducing 
the probability of making decision errors generally increases costs. In many cases controlling 
decision error within very small limits is unnecessary for making a decision that satisfies the 
decision maker's needs. For instance, if the consequences of decision errors are minor, a 
reasonable decision could be made based on relatively crude data (data with high total study 

. 

'Note that these definitions are not the same as false positive or false negative instrument readings, where 
similar terms are commonly used by laboratory or field personnel to describe a fault in a single result; false 
positive and false negative decision errors are defined in the context of hypothesis testing, where the terms are 
defined with respect to the null hypothesis. 
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error). On the other hand, if the consequences of decision errors are severe, the decision 
maker will want to control sampling design and measurement errors withm very small limits. 

To nlinimize unnecessary effort controlling decision errors, the planning team must 
determine whether reducing sampling design and measurement errors is necessary to meet the 
decision maker's needs. These needs are made explicit when the decision maker specifies 
probabilities of decision errors that are tolerable. Once these tolerable limits on decision 
errors are defined, then the effort necessary to analyze and reduce sampling design and 
measurement errors to satisfy these limits can be determined in Step 7: Optimize the Design 
for Obtaining Data. It may be necessary to iterate between these two steps before finding 
tolerable probabilities of decision errors that are feasible given resource constraints. 

Activities 
\ 

Determine the possible range of the parameter of interest. 
the parameter of interest by estimating its likely upper and lower bounds. This will help 
focus the remaining activities of this step on only the relevant values of the parameter. For 
example, the range of the parameter shown in Figures 6- 1 and 6-2 at the end of this chapter 
is between 50 and 200 ppm. Historical and documented analytical data are of great help in 
establishing the potential parameter range. 

Identify the decision errors and choose the null hypothesis. 
error occurs relative to the action level and establish which decision error should be defined 
as the null hypothesis (baseline condition). This process has four steps: 

Establish the possible range of 

Define where each decision 

(1) Define both types of decision errors and establish the true state of nature for 
each decision error. Define both types of decision errors and determine which 
one occurs above and which one occurs below the action level. A decision 
error occurs when the data mislead the decision maker into concluding that the 
parameter of interest is on one side of the action level when the true value of 
the parameter is on the other side of the action level. For example, consider a 
situation in which a study is being conducted to determine if mercury 
contamination is creating a health hazard and EPA wants to take action if more 
than 5% of a population of fish have mercury levels above a risk-based action 
level. In this case, a decision error would occur if the data lead the decision 
maker to conclude that 95% of the mercury levels found in the fish population 
were below the action level (i.e., the parameter is the "95th percentile" of 
mercury levels in the fish population) when the true 95th percentile of mercury 
levels in the fish population was above the action level (which means that more 
than 5% of the fish population contain mercury levels greater than the action 
level). The other decision error for this example would be that the data lead 
the decision maker to conclude that the 95th percentile of mercury levels in the 
fish population is greater than the action level when the true 95th percentile is 
less than the action level. 
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The "true state of nature" is the actual condition or feature of the environment 
that exists, but is unknown to the decision maker. Each decision error consists 
of two parts, the true state of nature and the conclusion that the decision maker 
draws. Using the example above, the true state of nature for the first decision 
error is that the 95th percentile of mercury levels in the fish population is 
above the action level. 

Specifj, and evaluate the potential consequences of each decision error. 
Specify the likely consequences of making each decision error and evaluate 
their potential severity in temis of economic and social costs, human health and 
ecological effects, political and legal ramifications, and so on. Consider the 
alternative actions that would be taken under each decision error scenario, as 
well as secondary effects of those actions. For example, in determining 
whether or not 95% of a fish population contain mercury levels above a risk- 
based action level, there may be a variety of potential consequences of 
committing a decision error. In the first decision error described above, where 
the decision maker concludes that the 95th percentile is below when the true 
95th percentile was above the action level, the decision maker may decide to 
continue to allow fishing in the waters and not undertake any cleanup activity. 
The resulting consequences might include human health and ecological effects 
from consumption of contaminated fish by humans and other animals, 
economic and social costs of health care and family disruption, and damaged 
credibility of EPA when (and if) the decision error is detected. If the other 
type of decision error is committed, where the decision maker decides that the 
95th percentile exceeds the action level when the true 95th percentile is below 
the action level, the decision maker might ban all fishing in the local waters 
and initiate cleanup activities. The consequences might include economic and 
social costs of lost revenues and job displacement in the fishing industry, 
damaged credibility for EPA when the cleanup activities expose the nature of 
the decision error, and the threat of lawsuits by fishing interests. 

Evaluate the severity of potential consequences of decision errors at different 
points within the domains of each type of decision error, since the severity of 
consequences may change as the parameter moves M e r  away from the action 
level. Consider whether or not the consequences change abruptly at some 
value, such as a threshold health effect level; the decision maker may want to 
change the tolerable limit on the decision error at such a point. 

(3) Establish which decision error has more severe consequences near the action 
level. Based on the evaluation of potential consequences of decision errors, the 
decision maker should determine which decision error causes greater concern 
when the true parameter value is near the action level. It is important to focus 
on the region near the action level because this is where the true parameter 
value is most likely to be when a decision error is made (in other words, when 
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the true parameter is far above or far below the action level, the data are much 
more likely to indicate the correct decision). This determination typically 
involves value judgements about the relative severity of different types of 
consequences within the context of the problem. In the fish contamination 
problem above, the decision maker would weigh the potential health 
consequences from allowing people to consume contaminated fish versus the 
econoinic and social dlsmption from banning all fishing in the community. In 
this case, the decision maker might carehlly consider how uncertain or 
conservative the risk-based action level is. 

(4) Dejine the null hypothesis (baseline condition) and the alternative hypothesis 
and assign the terms 'yalse positive" and 'Sfalse negative" to the appropriate 
decision error. In problems that concern regulatory compliance, human health, 
or ecological risk, the decision error that has the most adverse potential 
consequences should be defined as the null hypothesis (baseline condition). ' 
In statistical hypothesis testing, the data must conclusively demonshite that the 
null hypothesis is false. That is, the data must provide enough information to 
authoritatively reject the null hypothesis (disprove the baseline condition) in 
favor of the alternative. Therefore, by setting the null hypothesis equal to the 
true state of nature that exists when the more severe decision error occurs, the 
decision maker guards against making the more severe decision error by 
placing the burden of proof on demonstrating that the most adverse 
consequences will not be likely to occur. 

It should be noted that the null and alternative hypotheses have been 
predetermined in many regulations. If not, the planning team should define the 
null hypothesis (baseline condition) to correspond to the true state of nature for 
the more severe decision error and define the alternative hypothesis to 
correspond to the true state of nature for the less severe decision error. 

Using the definitions of null and alternative hypotheses, assign the term "false 
positive" to the decision error in which the decision maker rejects the null 
hypothesis when it is true, which corresponds to the decision error with the 
more severe consequences identified in task (3). Assign the term "false 
negative" to the decision error in which the decision maker fails to reject the 

'Note that this differs somewhat from the conventional use of hypothesis testing in the context of planned 
experiments. There, the alternative hypothesis usually corresponds to what the experimenter hopes to prove, and 
the null hypothesis usually corresponds to some baseline condition that represents an "opposite" assumption. For 
instance, the experimenter may wish to prove that a new water treatment method works better than an existing 
accepted method. The experimenter might formulate the null hypothesis to correspond to "the new method 
performs no better than the accepted method," and the alternative hypothesis as "the new method perfoms better 
than the accepted method." The burden of proof would then be on the experimental data to show that the new 
method performs better than the accepted method, and that this result is not due to chance. 
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null hypothesis when it is false, whch corresponds to the decision error with 
the less severe consequences identified in task (3). 

\ 

Specify a range of possible parameter values where the consequences of decision errors 
are relatively minor (gray region). The gray region is a range of possible parameter values 
where the consequences of a false negative decision error are relatively minor. The gray 
region is bounded on one side by the action level and on the other side by that parameter 
value where the consequences of making a false negative decision error begin to be 
significant. Establish this boundary by evaluating the consequences of not rejecting the null 
hypothesis when it is false. The edge of the gray region should be placed where these 
consequences are severe enough to set a limit on the magnitude of this false negative decision 
error. Thus, the gray region is the area between this parameter value and the action level. 

It is necessary to specify a gray region because variability in the population and 
unavoidable imprecision in the measurement system combine to produce variability in the 
data such that a decision may be "too close to call" when the true parameter value is very 
near the action level. Thus, the gray region (or "area of uncertainty") establishes the 
niininium distance from the action level where the decision maker would like to begin to 
control false negative decision errors. In statistics, the width of this interval is called the 
"illinhum detectable difference" and is often expressed as the Greek letter delta (A).  The 
width of the gray region is an essential part of the calculations for determining the number of 
samples needed to satisfy the DQOs, and represents one important aspect of the decision 
maker's concern for decision errors. A more narrow gray region implies a desire to detect 
conclusively the condition when the true parameter value is close to the action level (t'closel' 
relative to the variability in the data). When the true value of the parameter falls within the 
gray region, the decision maker may face a high probability of making a false negative 
decision error, since the data may not provide conclusive evidence for rejecting the null 
hypothesis, even though it is actually false (Le., the data may be too variable to allow the 
decision maker to recognize that the presumed baseline condition is, in fact, not true). 

From a practical standpoint, the gray region is an area where it will not be feasible or 
reasonable to control the false negative decision error rate to low levels because of high costs. 
Given the resources that would be required to reliably detect small differences between the 
action level and the true parameter value, the decision maker must .balance the resources spent 
on data collection with the expected consequences of making that decision error. For 
example, when testing whether a parameter (such as the mean concentration) exceeds the 
action level, if the true parameter is near the action level (relative to the expected variability 
of the data), then the imperfect data will tend to be clustered around the action level, with 
some values above the action level and some below. In this situation, the likelihood of 
committing a false negative decision error will be large. To determine with confidence 
whether the true value of the parameter is above or below the action level, the decision maker 
would need to collect a large amount of data, increase the precision of the measurements, or 
both. If taken to an extreme, the cost of collecting data can exceed the cost of making a 
decision error, especially where the consequences of the decision error may be relatively 
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minor. Therefore, the decision maker should establish the gray region, or the region where it 
is not critical to control the false negative decision error, by balancing the resources needed to 
“make a close call” versus the consequences of malung that decision error. 

Assign probability limits to points above and below the gray region that reflect the 
tolerable probability for the occurrence of decision errors. 
points above and below the gray region that reflect the decision maker’s tolerable limits for 
making an incorrect decision. Select a possible value of the parameter; then choose a 
probability limit based on an evaluation of the seriousness of the potential consequences of 
making the decision error if the true parameter value is located at that point. At a minimum, 
the decision maker should specify a false positive decision error limit at the action level, and 
a false negative decision error limit at the other end of the gray regon. For many situatioris, 
the decision maker may wish to specify additional probability limits at other possible 
parameter values. For example, consider a hypothetical toxic substance that has a regulatory 
action level of 10 ppm, and which produces threshold effects in humans exposed to mean 
concentrations above 100 ppm. In this situation, the decision maker may wish to specify 
more stringent probability limits at that threshold concentration of 100 ppm than those 
specified at 10 ppm. The tolerable decision error limits should decrease fiu-ther away from 
the action level as the consequences of decision error become more severe. 

Assign probability values to 

Given the potentially high cost of controlling sampling design error and measurement 
error for environmental data, Agency decision making is rarely supported by decision error 
limits more stringent than 0.01 (1%) for both the false positive and false negative decision 
errors. This guidance recommends using 0.01 as the starting point for setting decision error 
rates. The most frequent reasons for setting limits greater (i.e., less stringent) than 0.01 are 
that the consequences of the decision errors may not be severe enough to warrant setting 
decision error rates that are this extreme. The value of 0.01 should 
prescriptive value for setting decision error rates, nor should it be considered as the policy of 
EPA to encourage the use of any particular decision error rate. Rather, it should be viewed 
as a starting point from which to develop limits on decision errors that are applicable for each 
study. If the decision maker chooses to relax the decision error rates from 0.01 for false 
positive or false negative decision errors, the planning team should document the reasoning 
behind setting the less stringent decision error rate and the potential impacts on cost, resource 
expenditure, human health, and ecological conditions. 

not be considered a 

The combined information from the activities section of this chapter can be graphed 
onto a “Decision Performance Goal Diagram’’ or charted in a “Decision Error Limits Table” 
(see Figures 6-1 and 6-2 and Tables 6-1 and 6-2 below). Both are useful tools for visualizing 
and evaluating all of the outputs from this step. Figure 6-1 and Table 6-1 illustrate the case 
where the null hypothesis (baseline condition) is that the parameter of interest exceeds the 
action level (e.g., the waste is hazardous). Figure 6-2 and Table 6-2 illustrate the case where 
the null hypothesis (baseline condition) is that the parameter is less than the action level (e.g., 
the waste is not hazardous). 

I 
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Figure 6-2. An Example of a Decision Performance Goal Diagram 
Baseline Condition: Parameter is Less Than Action Level. 

True Correct Type of Tolerable Probability of 
Concentration Decision Error Incorrect Decision 

< 60 pprn Not exceed F(+) 5 yo 

60 to 100 Not exceed F(+) 10% 

120 to 150 Does exceed F(-) 20% 

100 to 120 Does exceed F(-) gray region 

> 150 Does exceed F(-) 5 yo 

Table 6-2. Decision Error Limits Table Corresponding to Figure 6-2. 
(Action Level = 100 ppm). 
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CHAPTER 7 

STEP 7: OPTIMIZE THE DESIGN FOR OBTAINING DATA 

THE DATA QUALITY OBJECTIVES PROCESS 

State the Problem 

Identify the Decision 

4 
Identify Inputs to the 

I Define the StudBoundaries I + Dev p a Decision Rule 
I 1 I 

1 
I Sficify Limits on Decision Errors I I 

OPTIMIZE THE DESIGN 
Purpose 

To identify a resource-effective data 
collection design for generating 
data that are expected to satisfy the DQOs. 

Activities 

Review the DO0 outputs and existing 
environmental data. 

Develop general data collection 
design alternatives. 
Formulate the mathematical expressions 
needed to solve the design problems 
for each design alternative. 
Select the optimal sample size that 
satisfies the DQOs for each design alternative. 
Select the most resource-effective design that 
satisfies all of the DQOs. 

Document the operational details and 
theoretical assumptions of the selected 
design in the sampling and analysis plan. 

PurDose 
The purpose of this step is to identify a resource-effective data collection design for 

generating data that are expected to satisfy the DQOs. - 
The most resource-effective design for the study that is expected to achieve the 
DQOs. 
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Background 

In this step, statistical techniques are used to develop alternative data collection 
designs and evaluate their efficiency in meeting the DQOs. To develop the optimal design 
for this study, it may be necessary to work through this step more than once after revisiting 
previous steps of the DQO Process. 

The objective of this step is to identify the most resource-effective data collection 
design expected to generate data that satisfy the DQOs specified in the preceding steps. 
While a full explanation of the procedures for developing a data collection design is beyond 
the scope of this guidance document, it does provide a broad overview of the steps that need 
to be accomplished to reach tlus goal. The example in Appendix B illustrates some of these 
activities in more detail. 

Activities 

Review the DQO outputs and existing environmental data. Review the DQO outputs 
generated in the preceding six steps to ensure that they are internally consistent. The DQOs 
should provide a succinct collection of information on the context of, requirements for, and 
constraints on the data collection design. Review existing data in more detail if it appears 
that they can be used to support the data collection design (e.g., analyze the variability in 
existing data if they appear to provide good information about the variance for the new data). 
If existing data are going to be combined with new data to support the decision, then 
determine if there are any gaps that can be filled or deficiencies that might be mitigated by 
including appropriate features in the new data collection design. 

Develop general data collection design alternatives. 
analysis designs based on the DQO outputs and other relevant information, such as historical 
patterns of contaminant deposition, estimates of variance, and technical characteristics of the 
contaminants and media. Generally, the goal is to find cost-effective alternatives that balance 
sample size and measurement performance, given the feasible choices for sample collection 
techniques and analytical methods. In some cases where there is a relatively high spatial or 
temporal variability, it may be more cost-effective to use less expensive yet less precise 
analytical methods so that a relatively large number of samples can be taken, thereby 
controlling the sampling design error component of total study error. In other cases where 
the contaminant distribution is relatively homogeneous, or the action level is very near the 
method detection limit, it may be more cost-effective to use more expensive yet more precise 
and/or more sensitive analytical methods and collect fewer samples, thereby controlling the 
analytical measurement error component of total study error. Examples of general data 
collection design alternatives include: 

Develop alternative data collection and 

0 factorial design sequential random sampling 
0 simple random sampling 0 systematic sampling 
0 stratified random sampling 0 composite sampling (in conjunction 

with another sampling design) 
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Formulate the mathematical expressions needed to solve the design problem for each 
data collection design alternative. Develop the following three mathematical expressions 
needed to optimize the data collection design as follows: 

(1) Define a suggested method for testing the statistical hypothesis and define a 
sample size formula that corresponds to the iiiethod if one exists 
(e.g., a Student's t-test). 

(2) Develop a statistical model that describes the relationship of the measured 
value to the "true" value. Often the model will describe the coniponents of 
error or bias that are believed to exist in the measured value. 

(3) Develop a cost function that relates the number of samples to the total cost of 
sampling and analysis. 

Select the optimal sample size that satisfies the DQOs for each data collection design 
alternative. Using the mathematical expressions from the previous activity, solve for the 
optimal sample size that satisfies the DQOs, including the decision maker's limits on decision 
errors. If no design will meet the limits on decision errors within the budget or other 
constraints, then the planning team will need to relax one or more constraints. For example: 

0 increase the budget for sampling and analysis; 
0 increase the width of the gray region; 
0 increase the tolerable decision error rates; 
0 relax other project constraints, such as the schedule; or 
0 change the boundaries; it may be possible to reduce sampling and analysis costs by 

changing or eliminating subgroups that will require separate decisions. 

Select the most resource-effective data collection design that satisfies all of the DQOs. 
Evaluate the design options based on cost and ability to meet the DQO constraints. Choose 
the one that provides the best balance between cost (or expected cost) and ability to meet the 
DQOs. 

The statistical concept of a power function is extremely usefid in investigating the 
performance of alternative designs. The power function is the probability of rejecting the null 
hypothesis (H ,) when the null hypothesis is false (i.e., the alternative condition is true). If 
there was no error associated with a decision, the ideal power function would be 0 if H 
true, and 1 if H, were false. Since decisions are based on imperfect data, however, it is 
impossible to achieve this ideal power function. Instead, the power function will most likely 
yield values that are small when H , is true and large when H is false. A performance curve 
is based on the graph of the power function. ' The performance curve can be overlaid into 

were 

'In this guidance, the performance curve is based on either the power curve or the complement of the power curve. 
This ensures that the performance curve always rises from left to right. 

EPAQNG-4 39 September I994 



the Decision Performance Goal Diagram to assess how well a test performs or to compare 
competing tests. A design that produces a very steep performance curve is preferred over one. 
that is relatively flat. An example of a performance curve is shown in Figure 7- 1. 

Error Rates 

Tolerable 

Positive 
Decision Considered 

Error Rates 

False Decision Error 

- 0.1 

50 70 90 110 130 150 170 190 
60 80 100 120 140 160 180 200 

Action Level 

True Value of the Parameter (Mean Concentration, ppm) 

Figure 7-1. An Example of a Power Curve 
Baseline Condition: Parameter is Less Than Action Level 

Document the operational details and theoretical assumptions of the selected design in 
the sampling and analysis plan. Document the selected design's key features that must be 
implemented properly to allow for efficient and valid statistical interpretation of the data. It 
is particularly important to document the statistical assumptions that could be violated through 
errors in or practical constraints on field sample collection procedures or analytical methods. 

After all the activities have been completed it may be helpful to enlist the advice and 
review of a statistician with expertise in data collection designs. This will be particularly 
usehl if the initial data collection designs have been developed by an inexperienced 
statistician or an environmental scientist with limited statistical training. The experienced 
statistician may be able to offer innovative alternative data collection designs that may be 
more cost-effective or simpler to implement. 

EPA QNG-4 40 September 1994 



BIBLIOGRAPHY 

Bates, D.J., R.O. Gilbert, N.L. Hassig, R.F. O'Brien, B.A. Pulsipher. November 1993. 
Decision Performance Criteria: The Driver Behind the Data Quality Objectives 
Process, A Statistical Introduction (Draft). Battelle Pacific Northwest Laboratory, 
Richland, Washington. 

Cochran, W. 1977. Sampling Techniques. New York: John Wiley. 

Desu, M.M., and D. Raghavarao. 1990. 
Academic Press. 

Sample Size Methodology. San Diego, CA: 

Gilbert, Richard 0. 1987. Statistical Methods for Environmental Pollution Monitoring. New 
York: Von Nostrand Reinhold. 

Guenther, William C. 1977. Sampling Inspection in Statistical Quality Control. Griffin's 
Statistical Monographs and Courses, No. 37, London: Charles Griffin. 

Guenther, William C. 1981. "Sample Size Formulas for Normal Theory T Test." n e  
American Statistician . Vol. 35, No. 4. 

U.S. Environmental Protection Agency. 1994. EPA Quality System Requirements for 
Environmental Programs. EPA QAR- 1. 

U. S. Environmental Protection Agency. 1994. EPA Requirements for Quality Assurance 
Project Plans for Environmental Data Operations. EPA QAR-5. 

U.S. Environmental Protection Agency. 1994. EPA Requirements for Quality Management 
Plans. EPA QAR-2. 

U.S. Environmental Protection Agency. 1994. Guidance for Data Quality Assessments. EPA 
. QNG-9. 

U.S. Environmental Protection Agency. 1993. Guidance'for Planning in Support of 
Environmental Decision Making Using the Data Quality Objectives Process 
Final). Quality Assurance Management Staff. 

(Interim 

EPA QNG-4 41 September I994 



U.S. Environmental Protection Agency. 1992. Statistical Methods for Evaluating the 
Attainment of Cleanup Standards: Volume 111: Reference-Based Standards for Soils 
and Solid Media. EPA 230-R-94-004, Office of Policy, Planning and Evaluation. 

U.S. Environmental Protection Agency. 1992. Methods for Evaluating the Attainment of 
Cleanup Standards: Volume 2: Ground Water. 
Planning and Evaluation. 

EPA 230-R-92-014, Office of Policy, 

U.S. Environmental Protection Agency. 1989. 
Cleanup Standards: Volume 1: Soils and Solid Media. 

Methods for Evaluating Attainment of 
EPA 230102-89-042, Ofice 

of Policy, Planning and Evaluation. 

U.S. Environmental Protection Agency. 1986. 
Description of Stages I and 11. Quality Assurance Management Staff. 

Development ofData Quality Objectives, 

U.S. Environmental Protection Agency. April 1984. "Order 5360.1, Policy and Program 
Requirements to Implement the Mandatory Quality Assurance Program." Office of the 
Administrator. 

42 September 1994 



APPENDIX A 

BEYOND THE DQO PROCESS: 
THE QUALITY ASSURANCE PROJECT PLAN 

AND DATA QUALITY ASSESSMENT 

Overview 

This appendix explains some important QA management steps that occur after the 
DQO Process has been completed. The DQO Process is part of the planning phase of the 
data collection operation, as illustrated in Figure A- 1. At the completion of the DQO Process, 
the planning team will have documented the project objectives and key performance 
requirements for the data operations in the DQOs, and will have identified a data collection 
design that is expected to achieve the DQOs. The data collection design and DQOs will then 
be used to develop the Quality Assurance Project Plan (QAPP), which provides the detailed 
project-specific objectives, specifications, and procedures needed to conduct a successful data 
collection activity. During the implementation phase of the data collection life cycle, the 
QAPP is executed and the data are collected. During the assessment phase, a Data Quality 
Assessment (DQA) is performed on the data to determine if the DQOs have been satisfied. 
The relationship between the DQO Process and these subsequent activities are explained in 
more detail below. 

Qualitv Assurance Proiect Plan Development 

The QAPP is a formal EPA project document that specifies the operational procedures 
and quality assurance/quality control (QNQC) requirements for obtaining environmental data 
of sufficient quantity and quality to satisfl the project objectives. The QAPP is an important 
part of the EPA Quality System, and is required for all data collection activities that generate 
data for use by EPA. 
and data acquisition, assessment and oversight, and data validation and useability. 

The QAPP contains information on project management, measurement 

The DQO Process may be viewed as a preliminary step in the QAPP development 
process, as shown in the right half of Figure A- 1. DQOs are a formal element of the QAPP, 
yet information contained in the DQOs relates indirectly to many other elements of the 

QAPP. In essence, the DQOs provide statements about the expectations and requirements of 
the data user (such as a decision maker). In the QAPP, these requirements are translated into 
measurement performance specifications and QNQC procedures for the data suppliers, to 

' U.S. Environmental Protection Agency. EPA Requirements for Quuliy Assurance Project Plans for 
Environmental Data Operations . EPA QMR-5, 1994. 
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provide them with the information they need to satisfy the data user's needs. Thus, the 
QAPP integrates the DQOs, the data collection design, and QNQC procedures into a coherent 
plan to be used for collecting defensible data that are of known quality and that is adequate 
for the data's intended use. 

PLANNING 
Data Quality Objectives Process 

Quality Assurance Project Plan Development 

I IMPLEMENTATION 
Field Data Collection and Associated 

Quality Assurance I Quality Control Activities I 

ASSESSMENT \ 
Data Validation 

Data Quality Assessment 

QA PLANNING FOR 
DATA COLLECTION 

OUTPUTS 

Sampling 

0 bjectives 

4 INPUTS 

Quality Assurance Project Pian 
Development 

Quality 
Assurance 

Figure A-1. QA Planning and the Data Life Cycle. 

The QAPP is structured into three sections: the Introduction, Requirements, and 
Elements. The Elements are the individual requirements of the QAPP that are listed 
separately. The Elements are grouped into four categories: Project Management, 
MeasurementData Acquisition, Assessment/Oversight, and Data Validation and Useability. 
The outputs of the DQO Process will provide information or inputs to elements in the Project 
Management section. 
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Data Quality Assessment 

After the environmental data have been collected and validated in accordance with the 
QAPP, the data must be evaluated to determine whether the DQOs have been satisfied. EPA 
has developed guidance on Data Quality Assessment (DQA) to address this need (see Figure 
A-2). * DQA involves the application of statistical tools to determine: 

0 whether the data meet the assumptions under which the DQOs and the data 
collection design were developed; and 

0 whether the total emor in the data is small enough to allow the decision maker to 
use the data to support the decision within the tolerable decision error rates 
expressed by the decision maker. 

It is important to verify the assumptions that underlie the DQOs and the data 
collection design so that statistical calculations performed on the data relate to the decision 
maker's problem in a scientifically valid and meaningful way. If the data do not support the 
underlying assumptions, then corrective actions must be taken to ensure that the decision 
maker's needs are met. Corrective action may be as simple as selecting a different statistical 
approach that relies on assumptions that are in better agreement with the data, or it may be as 
complicated as revising the data collection design and collecting new data that satisfy the 
decision maker's needs. 

If the data support the conclusion that the assumptions are reasonable, then the next 
step of a DQA can be taken, which is to evaluate how well the data support the actual 
decision. This is determined by evaluating whether the data conclusively demonstrate that the 
population parameter of interest is above (or below) the action level. In essence, this is 
where the decision maker applies a more specific or "operational" version of the decision rule 
that was developed in Step 5 of the DQO Process (in statistical terms, this is performing the 
hypothesis test). Whether the data are "conclusive" or not will depend on the estimated value 
and variability of the statistical parameter in relation to the gray region and the limits on 
decision errors that were specified in Step 6 of the DQO Process. If the decision cannot be 
made in accordance with the decision maker's DQOs, then the decision maker must decide 
whether to take corrective actions (such as collect more or better data), relax the DQOs, or 
make a decision anyway, without the benefit of adequate data. 



Thus, DQA is an essential element of the data operation because it helps to bring 
closure to the issues raised at the beginning of the DQO Process. By veriGing the 
assumptions required to draw scientifically valid and meaningful conclusions from the data, 
and by implementing the decision rule, DQA helps the decision maker detemfie whether the 
DQOs have been satisfied. 

PLANNING I 
Data Quality Objectives Process 

IMPLEMENTATION 
Field Data Collection and Assodated 

Quality Assurance I Quality Control Activities 

ASSESSMENT 
Data Validation 

Data Quality Assessment 

QUALLm ASSURANCE ASSESSMENT 

Routine Data QClPetformance 

DATA VALlDATlONNERlFlCATlON 
verify measurement performance 
verify measurement procedures and 1- OUTPUT 

reporting 

VAL1 DATEDNERI FI ED DATA 

INPUT 

DATA QUALITY ASSESSMENT 

- verify assumptions 
. make statistical decision 

verify DQOs 

OUTPUT f 
CONCLUSIONS DRAWN FROM DATA 

Figure A-2. Quality Assurance Assessment 

EPA QNG-4 46 September I994 



APPENDIX B 

FLY ASH WASTE 
DQO CASE STUDY: CADMIUM-CONTAMINATED 

Introduction 

This appendix presents a hctional,  but realistic example of the DQO outputs for a 
decision that could be made within the Resource Conservation and Recovery Act (RCRA) 
hazardous waste management program. The example is intended to illustrate the types of 
outputs that are conmion to the DQO Process. It is not intended, however, to represent the 
policy of the RCRA program for actual situations that may be similar to the example. Please 
consult with a knowledgeable representative within the RCRA program office about the 
current policy for making waste classification decisions for fly ash or other types of 
hazardous waste. 

The case study has been chosen because it is simple and straightforward, and because 
the outputs are uncomplicated. Although some of the outputs from this example may seem 
intuitive, this is not often the case in practice. For many studies, the DQO Process is 
complicated and thought-provoking., Even so, some steps will require more effort than others. 
Keep in mind that 
collection design. Once the frst six steps have been completed and thoroughly thought-out, 
then development of the most resource-effective data collection design can proceed. 

of the steps in the DQO Process are necessary to develop a data 

Backmound 

A waste incineration facility located in the Midwest routinely removes fly ash from its 
flue gas scrubber system and disposes of it in a local sanitary landfiil. Previously it was 
determined that the ash was not hazardous according to RCRA program regulations. The 
incinerator, however, recently began treating a new waste stream. The representatives of the 
incineration company are concerned that the waste fly ash could now contain hazardous levels 
of cadmium from the new waste sources. They have decided to test the ash to determine 
whether it should be sent to a hazardous waste landfill gr continue to be sent to the municipal 
landfill. They have decided to employ the DQO Process to help guide their decision making. 

Cadmium is primarily used as corrosion protection on metal parts of cars and electrical 
appliances. It is also used in some batteries. Cadmium and cadmium salts have toxic effects 
for humans through both ingestion and inhalation exposures. Ingestion exposure usually 
causes mild to severe irritation of the gastrointestinal tract, which can be caused by 

concentrations as low as 0.1 mg/kg/day. Chronic (long-term) inhalation exposure can cause 
increased incidence of emphysema and chronic bronchitis, as well as kidney damage. 
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Under the current Code of Federal Regulations, 40 CFR, Part 26 1, a solid waste can 
be considered “hazardous” if it meets specific criteria of ignitability, corrosivity, reactivity, 
and toxicity. One method that is used to determine if a solid substance, such as fly ash, 
meets the criteria for toxicity under the RCRA program regulations is to test a “representative 
sample” of the waste and perform a Toxicity Chadcteristic Leaching Procedure (TCLP) 
described in 40 CFR, Pt. 261, App. 11. During this process, the solid fly ash will be 
“extracted” using an acid solution. The extraction liquid (the TCLP leachate) will then be 
subjected to tests for specific metals and compounds. For this example, the only concern is 
with the concentration of cadmium in the leachate. The primary benefit of the DQO Process 
will be to establish the data collection design needed to determine if the waste is hazardous 
under RCRA regulations within tolerable decision error rates. 

As a precursor to the DQO Process, the incineration company has conducted a pi1M 
study of the fly ash to determine the variability in the concentration of cadmium between 
loads of ash leaving the facility. They have determined that each load is fairly homogeneous. 
There is a high variability between loads, however, due to the nature of the waste stream. 
Most of the fly ash produced is not hazardous and may be disposed of in a sanitary landfill. 
Thus, the company has decided that testing each individual waste load before it leaves the 
facility would be the most economical. Then they could send loads of ash that exceeded the 
regulated standards to the higher cost RCRA landfills and continue to send the others to the 
sanitary landfill. 

DQO Development 

The following is a representative example of the output from each step of the DQO 
Process for the fly ash toxicity problem. 

State the Problem - a description of the problem(s) and specifications of available 
resources and relevant deadlines for the study. 

IdentifL the members of the planning team - The members of the planning team will 
include the incineration plant manager, a plant engineer, a statistician, a quality 
assurance officer, an EPA representative who works within the RCRA program, and a 
chemist with sampling experience. 

Identifi the primary decision maker - There will not be a primary decision maker; 
decisions will be made by consensus. 

Develop a concise description of the problem - The problem is to determine which 
loads should be sent to a RCRA landfill versus a sanitary landfill. 

SpecifL available resources and relevant deadlines for the study - While the project 
will not by constrained by cost, the waste generator (the incineration company) wishes 
to hold sampling costs below $2,500. They have also requested that the waste testing 
be completed within 1 week for each container load. 
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Identify the Decision - a statement of the decision that will use environmental data and the 
actions that could result from this decision. 

(1) 
under RCRA regulations? 

Identijj the principal study question - Is the fly ash waste considered hazardous 

(2). Define alternative actions that could result jrom resolution of the principal study 
question - 

(a) The waste fly ash could be disposed of in a RCRA landfill. 

(b) The waste fly ash could be disposed of in a sanitary landfill. 

( 3 )  Combine the principal study question and the alternative actions into a decision 
statement - Decide whether or not the fly ash waste is hazardous under RCRA and 
requires special disposal procedures. 

(4) Organize multiple decisions - Only one decision is being evaluated. 

Identify the Inputs to the Decision - a list of the environmental variables or characteristics 
that will be measured and other information needed to resolve the decision statement. 

(1) Identify the information that will be required to resolve the decision statement 
resolve the decision statement, the planning team needs to obtain measurements of the 
cadmium concentration in the leachate resulting from TCLP extraction. 

- To 

(2) Determine the sources for each item of information identifed - The fly ash should be 
tested to determine if it meets RCRA regulated standards for toxicity using the test 
methods listed in 40 CFR, Pt. 26 1 , App. 11. Existing pilot study data provide 
information about variability, but do not provide enough information to resolve the 
decision statement. 

( 3 )  Identify the information that is needed to establish the action level - The action level 
will be based on the RCRA regulations for cadmium in TCLP leachate. 

(4) Confirm that appropriate measurement methods exist to provide the necessary data 
Cadmium can be measured in the leachate according to the method specified in 40 
CFR, Pt. 261, App. 11. The detection limit is below the standard. 

- 

Define the Boundaries of the Study - a detailed description of the spatial and temporal 
boundaries of the problem, characteristics that define the population of interest, and any 
practical considerations for the study. 
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( 1 ) Specifj, the characteristics that define the population ojinterest - Fly ash waste from 
the hazardous waste incinerator will be analyzed. The fly ash should not be mixed 
with any other constituents except water that is used for dust control. Each load of 
ash should fill at least 70% of the waste trailer. In cases where the trailer is filled less 
than 70%, the trailer must wait on-site until more ash is produced and fills the trailer 
to the appropriate capacity. 

( 2 )  Define the spatial boundary of the decision statement - 

(a) Define the geographic area to which the decision statement applies . Decisions 
will apply to each container load of fly ash waste. \ 

(b) When appropriate, divide the population into strata that have relatively 
homogeneous characteristics. 
relatively homogeneous within each container. 

Stratification is not necessary since the waste ash is 

(3) Define the temporal boundary of the decision statement - 

(a) Determine the timeframe to which the decision statement applies. It will be 
assumed that the sampling data represent both the current and fbture concentration 
of cadmium within the ash. 

(b) Determine when to collect data. Contained in the trucks, the waste does not pose 
a threat to humans or the environment. Additionally, since the fly ash is not 
subject to change, disintegration, or alteration, the decision about the waste 
characteristics does not warrant any temporal constraints. To expedite decision 
making, however, the planning team has placed deadlines on sampling and 
reporting. The fly ash waste will be tested within 48 hours of being loaded onto 
waste hauling trailers. The analytical results from each sampling round should be 
completed and reported within 5 working days of sampling. Until analysis is 
complete, the trailer cannot be used. 

(4) Define the scale of decision making -The scale of decision making will be each 
container of waste ash. 

( 5 )  Identijj practical constraints on data collection - The most important practical 
consideration that could interfere with the study is the ability to take samples from the 
fly ash that is stored in waste hauling trailers. Although the trailers have open access, 
special procedures and methods will have to be implemented for the samples to be 
representative of the entire depth of the ash. It has been suggested that core samples 
may be one practical solution to this problem. To get additional samples from each 
truck and to minimize the cost, compositing of core samples has been suggested. 
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Develop a Decision Rule - to define the parameter of interest, specify the action level and 
integrate previous DQO outputs into a single statement that describes a logical basis for 
choosing among alternative actions. 

(1) Specifjl the statistical parameter that characterizes the population of interest 
planning team is interested in the true mean concentration of cadnlium in the TCLP 
leachate for each container. 

- The 

(2) Specifjl the action level for the study - The action level for the decision will be the 
RCRA regulatory standard for cadnlium of 1 .O mg/L in the TCLP leachate. 

(3) Develop a decision rule (an "$ .. then ... " statement) - If the mean concentration of 
cadmium from the fly ash leachate in each container load is greater than 1 .O mgL 
(using the TCLP method as defined in 40 CFR 26 l), then the waste will be considered 
hazardous and will be disposed of at a RCRA landfill. If the mean concentration of 
cadmium from the fly ash waste leachate is less than 1 .O mgL (using the TCLP 
method as defined in 40 CFR 26 l), then the waste will be considered non-hazardous 
and will be disposed of in a sanitary landfill. 

Specify Tolerable Limits on Decision Errors - the decision maker's tolerable decision 
error rates based on a consideration of the consequences of making a decision error. 

(1) Determine thepossible range of the parameter of interest - From analysis of records 
of similar studies of cadmium in environmental matrices, the range of the cadmium 
concentrations is expected to be from 0-2 m a .  Therefore the mean concentration is 
expected to, be between 0-2 mgL for th is  investigation. 

(2) IdentifL the decision errors and choose the null hypothesis - 

(a) Define both types of decision errors and establish the true state of nature for each 
decision error. The planning team has determined that the two decision errors are 
(I) deciding that the waste is hazardous when it truly is not, and (ii) deciding that 
the waste is not hazardous when it truly is. 

. 

The true state of nature for decision error (i) is that the wkte  is not hazardous. 

The true state of nature for decision error (ii) is that the waste is hazardous. 

(b) Specijj and evaluate the potential consequences of each decision error. 

The consequences of deciding that the waste is hazardous when it truly is not 
will be that the incinerator company will have to pay more for the disposal of 
the fly ash at a RCRA facility than at a sanitary landfill. 
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The consequences of deciding that the waste is not hazardous when it truly is 
will be that the incinerator company will dispose of the waste in a sanitary 
landfill which could possibly endanger human health and the environment. In 
this situation, they may also be liable for hture damages and environmental 
cleanup costs. Additionally, the reputation of the incinerator company may be 
compromised, jeopardizing its future profitability. 

(c) Establish which decision error has more severe consequences near the action 
level. The planning team has concluded that decision error (ii) has the more 
severe consequences near the action level since the risk of jeopardizing human 
health outweighs the consequences of having to pay more for disposal. 

(d) Define the null hypothesis (baseline condition) and the alternative hypothesis 'and 
assign the terms '[false positive" and 'lfalse negative" to the appropriate decision 
error. 

The baseline condition or null hypothesis (H ,,) is "the waste is hazardous." 

The alternative hypothesis (H J is "the waste is not hazardous." 

The false positive decision error occurs when the null hypothesis is rejected when 
it is true. For this example, the false positive decision error occurs when the 
decision maker decides the waste is not hazardous when it truly is hazardous. The 
false negative decision error occurs when the null hypothesis is not rejected when 
it is false. For this example, the false negative decision error occurs when the 

decision maker decides that the waste is hazardous when it truly is not hazardous. 

(3) Spec& a range ofpossible values of the parameter of interest where the consequences 
of decision errors are relatively minor (gray region) - The gray region is the area 
adjacent to the action level where the planning team feels that the consequences of a 
false negative decision error are minimal. To decide how to set the width of the gray 
region, the planning team must decide where the consequences of a false negative 
decision error are minimal. Below the action level, even if the concentration of 
cadmium were very close to the action level, the monetary costs of disposing of the 
waste at a RCRA facility are the same as if the waste had a much lower concentration 
of cadmium. Clearly any false negative decision error (to the left of the action level) 
will cause the incinerator company and their customers to bear the cost of unnecessary 
expense (Le., sending nonhazardous waste to a RCRA facility). The planning team, 
however, also realizes that they must define a reasonable gray region that balances the 
cost of sampling with risk to human health and the environment and the ability of 
measurement instruments to detect differences. Therefore the planning team has 
specified a width of 0.25 m g 5  for this gray region based on their preferences to detect 
decision errors at a concentration of 0.75 m a  (see Figure B-1). 
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(4) Assign probability values to points above and below the action level that reflect the 
tolerable probability for the occurrence of decision errors - For this example, RCRA 
regulations allow a 5% decision error rate at the action level. The planning team has 
set the decision error rate to 5% from 1 mg/L to 1.5 m a  and 1% from 1.5 mg/L to 2 
mg/L as the consequences of health effects from the waste disposed of in the 
municipal landfill increase. On the other side of the action level, the planning team 
has set the tolerable probability of making a false negative error at 20% when the true 
parameter is from 0.25 to 0.75 m a  and 10% when it is below 0.25 mg/L, based on 
both experience and an economic analysis that shows that these decision error rates are 

reasonable to balance the cost of sampling versus the consequence of sending clean 
ash to the RCRA facility (see Figure B- 1). 

Optimize the Design - select the most resource-effective data collection and analysis design 
for generating data that are expected to satisfy the DQOs. Optimizing the design is the one 
step of the DQO Process that will most likely be completed by a statistician or someone who 
has data collection design expertise. Using the case study as an example, the following 
section has been included to provide the reader with a background on the overall process that 
the statistician might follow to optimize the final data collection design. 
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Figure B-1. Decision Performance Goal Diagram for Cadmium Compliance Testing 
Baseline Condition: Mean Exceeds Action Level 
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Overview 

Developing a data collection design requires an understanding of the sampled medium 
and the information that was generated in previous DQO steps. The statistician's job is to 
review the background information, determine the appropriate statistical application to 
adequately solve the problem, and develop one or more appropriate data collection designs. 
Once this is complete, the statistician will compare the cost and performance of the different 
data collection designs. This process can be broken down into five distinct steps: 

(1) 

(2) 

Review the DQO outputs and existing environmental data. 

Develop general data collection design alternatives. 

(3) For each data collection design alternative, select the optimal sample size that 
satisfies the DQOs. 

(4) Select the most resource-effective data collection design that satisfies all of the 
DQOs. 

( 5 )  Document the operational details and theoretical assumptions of the selected 
design in the sampling and analysis plan. 

.. . .  

Activities 

Review the DQO outputs and existing environmental data - Because the statistician 
has participated in the DQO Process for this problem, there is no need to review the 
DQO outputs fkther. The only existing data relevant to this problem are the pilot 
study data. Based on the pilot study, the incineration company has determined that 
each load of ash is fairly homogeneous, and has estimated the standard deviation in 
the concentration of cadmium within loads of ash to be 0.6 m g L  

Develop general data collection design alternatives - Generally, the design 
alternatives are based on a combination of design objectives developed in previous 
DQO Process steps and knowledge of statistical parameters about the medium or 
contaminant. Below are four examples of possible designs that could apply to the case 
study: 

(a) Simple Random Sampling. - The shplest ty-pe of probability sample is the simple 
random sample. With this type of sampling, every possible point in the sampling 
medium has an equal chance of being selected. Simple random samples are used 
primarily when the variability of the medium is relatively small and the cost of 
analysis is relatively inexpensive. Simple random sample locations are generally 
developed through the use of a random number table or through computer 
generation of pseudo-random numbers. 
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In the case of the cadmium-contaminated ash, a futed number of random grab 
samples would be selected and analyzed. Standard lab splits and QC samples 
would be taken according to standard procedures for the RCRA program. Each 
sample would be chosen randomly in three dimensions. A Student's t-test is 
suggested as a possible method for testing the statistical hypothesis. 

Composite Simple Random Sampling (composite sampling) - This type of 
sampling consists of taking multiple samples, physically combining (compositing) 
them, and drawing one or more subsamples for analysis. Composite samples are 
taken primarily when an average concentration is sought and there is no need to 
detect peak concentrations. By compositing the samples, researchers are able to 
sample a larger number of locations than if compositing was not used, while 
reducing the cost of analysis by combining several samples. 

In the case of the cadmium-contaminated ash, a futed number of random grab 
samples would be taken and composited. The number of grab samples contained 
in a composite sample (g) is also fixed. To determine sampling locations within 
the composite, a container would be divided into "g" equal-volume strata and 
samples would be chosen randomly within each strata. The use of strata ensure 
full coverage of each container. Standard lab splits and QC samples would be 
taken according to standard procedures for the RCRA program. A Student's t-test 
is suggested as the possible method for testing the statistical hypothesis. 

(c)  Seauential Sampling - - Sequential sampling involves making several rounds of 
sampling and analysis. A statistical test is performed after each analysis to arrive 
at one of three possible decisions: reject the null hypothesis, accept the null 
hypothesis, I or collect more samples. This strategy is applicable when sampling 
andor analysis costs are high, when information concerning sampling andor 
measurement variability is lacking, when the waste and site characteristics of 
interest are stable over the timeframe of the sampling effort, and when the 
objective of the sampling is to test a single hypothesis. By taking samples in 
sequence, the researcher can hold down the cost of sampling and analysis. 

In the case of the cadmium-contaminated ash, a sequential probability sample 
could be performed. The samples in each sampling round would be chosen 
randomly in three dimensions. If the decision to stop sampling has not been made 
before the number of samples required for the simple random sample are taken, 
sampling would stop at this point and the simple random sample test would be 
performed. Standard laboratory splits and QC samples would be taken according 
to standard procedures for the RCRA program. An approximate ratio test is 

'Decide not to reject the null based on tolerable decision error limits. 
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suggested after each round of sampling is complete to decide whether or not to 
conclude that the waste is hazardous or to continue sampling. 

(d) Stratified Random Samoling. - - Stratified sampling involves dividing the study 
area into two or more non-overlapping subsets (strata) which cover the entire 
volume to be sampled. These strata should be defined so that physical samples 
within a stratum are more similar to each other than to samples from other strata. 
Sampling depth, concentration level, previous cleanup attempts, and confounding 
contaminants can be used as the basis for creating strata. Once the strata have 
been defined, each stratum is then sampled separately using one of the above 
designs. Stratification is often used to ensure that important areas of a site are 
represented in the sample. In addition, a stratified random sample may provide 
more precise estimates of contaminant levels than those obtained fiom a simple 
random sample. Even with imperfect information, a stratified sample can be more 
resource-e ffective. 

Since the incineration company has already determined that each load of ash is 
fairly homogeneous, stratification does not have any advantages over a simple 
random sample. In addition, since the company has decided to test each waste 
load individually before it leaves the facility, stratifyrng each waste load would be 
difficult and unnecessary. Therefore, this data collection design will not be 
considered further. 

(3) For each data collection design alternative, select the optimal sample size that 
satisfies the DQOs - The formula for determining the sample size (number of 

' samples to be collected) is chosen based on the hypothesis test and data collection 
design. Standard formulas can be found in several references, including: 

0 Cochran, W. 1977. Sampling Techniques. New York: John Wiley. 

0 Desu, M.M., and D. Raghavarao. 1990. Sample Size Methodology . San Diego, 
CA: Academic Press. 

0 Gilbert, Richard 0. 1987. Statistical Methods for Environmental Pollution 
Monitoring. New York Van Nostrand Reinhold. 

0 U.S. Environmental Protection Agency. 1989. Methods for  Evaluating the 
Attainment of Cleanup Standards: Volume 1: Soils and Solid Media. 
EPA 230/02-89-042, Office of Policy, Planning and Evaluation. 

U.S. Environmental Protection Agency. 1992. Methods for  Evaluating the 
Attainment of Cleanup Standards: Volume 2: Ground Water. 
EPA 230-R-92-014, Office of Policy, Planning and Evaluation. 
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0 U.S. Environmental Protection Agency. 1994. Statistical Methods for 
Evaluating the Attainment of Clean-up Standards: Volume 3: Reference- 
Bused Standards for Soils and Solid Media. 
Policy, Planning and Evalutaion. 

EPA 230-R-94-004. Office of 

These formulas can also be found in many basic statistics textbooks. Different 
formulas are necessary for each data collection design, for each parameter, and for 
each statistical test. These formulas are generally a fhction of a; p; the detection 
difference, A (delta); and the standard deviation, u. The detection difference,. A , is 
defined to be the difference between the action level (AL,) and the other bound of the 
gray region (U); Le., A = AL - U. In this case the standard deviation was derived 
from pilot data under approximately the same conditions as expected for the real 
facility. 

For example, a formula for computing the sample size necessary to meet the DQO 
constraints for comparing a mean against a regulatory threshold, when a simple 
random sample is selected, is: 

where: 

h2 = estimated variance in measurements (from pilot study) 
n = number of samples required, 
zp = the pth percentile of the standard normal distribution (from standard 

statistical tables), and 
A =  U - A L  

Simple Random Sample - Using the formula above, it was determined that 37 
samples are necessary to achieve the specified limits on decision errors. This 
sampling plan satisfies all the DQOs including budget, schedule, and practical 
constraints. 

Composite Sampling - To determine sample sizes for a composite sample, it is 
necessary to compute the number of composites samples, n; the number of samples, g, 
within each composite; and the number of subsamples, m, to be measured for each 
composite. Usually m=l; however, since this design is to be used repeatedly, it is 
suggested that two subsamples from each composite sample be measured to estimate 
composite variability, which can then be used to re-optimize the number of samples m 
and g. 

For a composite sample, with randoni sample locations, it has been determined that 
eight composite samples of eight samples each are sufficient to meet the limits on 
decision errors that have been specified. This design is more than sufficient to 
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(4) 

achieve the specified limits on decision errors and satisfies all the DQOs including 
budget, schedule, and practical constraints. 

Sequential Sampling - For the purposes of comparing costs, the average number of 
samples in a sequential sampling design can be estimated, but these estimates are only 
averages. The average sample size for concluding that the waste is hazardous is 16 
and the average sample size for concluding the waste is not hazardous is 22. The 
average sizes are different because the burden of proof is placed on disproving the null 
hypothesis, thus, more samples on average are required to prove that the alternative 
hypothesis (the waste is not hazardous) is true. However, these sample sizes are only 
averages. In some cases, fewer samples are necessary; in others, more may be 
necessary. This sampling plan satisfies all the DQOs including budget, schedule, and 
practical constraints. 

Select the most resource-effective data collection design that satisfies the DQOs - 
Compare the overall efficiency of each model and choose the one that will solve the 
problem most effectively. 

Cost Estimates for Each Design 

First, the costs for the three designs alternatives will be evaluated: 

Simple Random Samuling - A simple random sampling scheme can be implemented 
for each load of fly ash by first generating three-dimensional random sampling points. 
This can most easily be done by using a computer. Samples can then be taken using a 
special grab sampler which will be forced into the ash, opened to take the sample, 
then closed and removed. The difficulty with this type of sampling scheme is 
measuring sampling locations in three dimensions, and it may be difficult to gain 
access to the correct sampling locations. 

This design meets all of the required limits on decision errors. The cost of this design 
is calculated based on the assumed cost of selecting a sample ($lo), and the cost of 
analyzing a sample ($150). Since 37 samples need to be taken and analyzed, the cost 
of this design is: 

Cost,,, . = 37 x $10 + 37 x $150 
= $370 + $5550 = $5920 

Comuosite Samuling - Composite sampling will be performed similarly to simple 
random sampling except that after eight random samples are collected (one from each 
stratum), they will be combined and homogenized. Two sample aliquots for analysis 
will then be drawn from the homogenized mixture. This process will be repeated 
eight times. 
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This design meets all of the required limits on decision errors. The cost of this design 
is based on the cost of selecting ($10) and analyzing ($150) a sample. Eight samples 
will be used to make each composite sample for a sampling cost of $80; two 
subsamples will be analyzed from this composite sample for a cost of $300. 
Therefore, each composite sample will cost $380. The total cost of this design is: 

Cost,, = 8 x $380 = $3040. 

Sequential Sampling - Sequential sampling will be performed similarly to random 
sampling. The primary difference is that the ultimate number of samples will be 
determined by the results of one or more sampling rounds. 

This design has the potential to reduce the number of samples required in the simple 
random sampling design and still meet the decision error limits. The average costs of 
the two decisions are used below: 

The ash is hazardous: 
The ash is non-hazardous: 

16 x ($160) = $2,560 
22 x ($160) = $3,520 

To determine the expected cost, estimate the number of loads of ash that should be 
sent to a RCRA facility versus the number of loads that can be sent to a municipal 
facility. Suppose 25% of the loads are hazardous and should be sent to a RCRA 
facility. Then the expected cost (EC ,,) of this design should be . . 

EC,, = 0.25 x (cost of sampling when ash is hazardous) + (0.75 x cost of 
sampling when ash is non-hazardous) 

= 0.25 x ($2,560) + 0.75 x ($3,520) = $ 3,280 

Selection of a Design 

Because the simple random sampling design requires that many samples be taken and 
analyzed, it is inefficient for the goals of this study. Sampling will cost almost as 
much to determine whether the waste is hazardous or nonhazardous as it would cost to 
send all the waste to a RCRA hazardous waste landfill. Therefore, this decision is not 
resource-effective. 

The sequential data collection design is more resource-effective than the simple 
random sampling design. The potential savings over sending all waste to a RCRA 
hazardous waste facility is $6,750 - $3,280 = $3,470. The site owner has expressed 
disapproval for this sampling plan because of the time it may take before a decision 
can be made. If the ash was not homogeneous within a container, however, this data 
collection design may be the design of choice. 
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The composite sample design is the best option. It is the most resource-effective 
design and requires the least amount of time to implement. In addition, the use of 
strata ensures fill coverage of each container. It is recommended that each of the 
eight composite samples have two subsamples analyzed. In the future, after sufficient 
data have been collected to estimate the variability within each composite sample, it 
may be possible to reduce the number of samples that will be necessary to make a 
decision about the waste contents. 

( 5 )  Document the operational details and theoretical assumptions of the selected design in 
the sampling and analysisplan - A composite sample design should be used to 
determine whether each container of ash should be sent to a RCRA landfill or to a 
municipal landfill. Eight composite samples, consisting of eight grab samples, should 
be taken from each container and two subsamples from each composite should be 
analyzed at the laboratory. To form the composite samples, the containers will be 
divided into eight strata of equal size and one grab sample will be taken randomly 
within each stratum and composited. Sample locations will be generated randomly 
using computer-generated random numbers. The model assumes that the variability 
within a composite sample is negligible. Data from the subsamples can be used to test 
this assumption and make corrections to the model. 

Bevond the D O 0  Process - Evaluation of the Design using the DQA Process 

For this study, the data were collected using the composite sampling design. Once the 
samples were collected and analyzed, the data were evaluated statistically and scientifically 
using the DQA Process to inspect for anomalies, c o n f m  that the model assumptions were 
correct, select a statistical test, and verify that the test assumptions such as distribution and 
independence can be met. For this study, a t-test satisfied the DQOs, and inspection of the 
data indicated that there was no reason to believe that the data were not normally distributed 
or that there was correlation between data points. It was also verified that the within- 
composite variability was negligible. 

After three weeks of sampling, approximately 30% of the waste loads leaving the 
incinerator were found to have hazardous concentrations of cadmium in the fly ash. The data 
collection design was determined to be cost-effective because the combined cost of sampling 
and dlsposal was less than' sending all of the waste to a RCRA landfill. 
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APPENDIX C 

DERIVATION OF SAMPLE SIZE FORMULA FOR TESTING MEAN 
OF NORMAL DISTRLBUTION VERSUS AN ACTION LEVEL 

This appendix presents a mathematical derivation of the sample size formula used in 
the DQO example of Appendm B. 

Let X , ,  XZ, ..., Xn denote a random sample from a normal distribution with unknown 
mean p and known standard deviation u . The decision maker wishes to test the null 
hypothesis H, : p = AL versus the alternative HA : p >AL , where AL , the action level, is some 
prescribed constant; the false positive (Type I) error rate is a (i.e., probability of rejecting H, 
when p = AL is a);  and for some fixed constant U > A L  (where U is the other bound of the 
gray region), the false negative (Type 11) error rate is p (i.e., probability of rejecting H, when 
p = U is 1 - p ). Let X denote the sample mean of the Xs. It will have a normal distribution 
with mean p and variance a2/n . Hence the random variable Z defined by 

will have a standard normal distribution (mean 0, variance 1). Let 
of the standard normal distribution (available in most statistics books). Recall that the 
symmetry of the standard normal distribution implies that zp = -2, -,, . 

zp denote the p th percentile 

Case 1: Standard Deviation Known 

The test of H, versus HA is performed by calculating the test statistic 

( X - A L ) ~ ~  T =  
U 

If T > z ,  -& , the null hypothesis is rejected. 

Note that 
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where 

(4) 

Thus T has a normal distribution with mean E (p) and variance 1 , and in particular, E (AL) = 0 .  
Hence the Type I error rate is 

( 5 )  fr[rcjecfing H,,IHJ = fr[T>z,-,Ip=AL] = fr[z+~(AL)>z,_,] = Pr[Z>z,-,] = a. 

Achieving the desired power 1 - p when p = U requires that 

Pr[reject H,Ip=U] = 1 - p. 
Therefore, 

or 

Let A = U - AL , then rearrange terms to obtain 

or 

A2 

Case 2: Standard Deviation Unknown 

If the standard deviation u is unknown, then a test statistic ldce (2) is used except that 
u is replaced by S, an estimate of the standard deviation calculated from the observed Xs. 
Such a statistic has a noncentral t distribution rather than a normal distribution, and the n 
computed by the above formula will be too small, although for large n (say n>40), the 
approximation is good. The particular noncentral t distribution involved in the calculation 
depends on the sample size n. Thus, determining the exact minimum n that will satisfy the 
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Type I and Type I1 error rate conditions requires an iterative approach in which the 
noncentral t probabilities are calculated for various n values until the desired properties are 
achieved. With the aid of a computer routine for calculating such probabilities, this is not 
difficult; however, a simple and direct approach for approximating n is available. This 
approach, whose derivation is described in the paragraphs below, leads to the following 
approximate but very accurate formula for n: 

( q - a + Z , - p p J 2  1 2 
n =  + -Z, -a .  

A2 2 

In practice, since a is unknown, a prior estimate of it must be used in (8). 

The approach is based on the assumption that, for a given constant k, the statistic 
X-kS is approximately normal with mean 
and 1981). 

- ka and variance ( a2/n)( l+k2/2) (Guenther, 1977 

The classical t-test rejects H, when T = [( X - AL)/(S/fi)] > D, where the critical 
value D is chosen to achieve the desired Type I error rate 
rearranged as X - kS > AL, where k = D/ fi. Subtracting the mean (assuming H,) and dividing 
by the standard deviation of X - kS on both sides of the inequality leads to 

a .  The inequality can be 

By the distributional assumption on X I S ,  the left side of (9) is approximately standard 
normal when p = AL, and the condition that the Type I error rate is a becomes 

Pr[Z>kfi/Jl+k2/2] = a ,  (10) 

One can show that (1 1) is equivalent to 

(12) 
2 1/[ 1 +k2/2] = 1 -zI J2n. 

The condition that the Type 11 error rate is p (or that power is 1- p) when p = U means that 
the event of incorrectly accepting H, given X-kS s AL should have probability p. 
Subtracting the mean (U - ka) and dividing by the standard deviation of X-kS on both sides 
of this inequality yields 
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X - k s - ( U - k ~ )  ~ AL-(U-ka) 

( U / f i / r n  ( U / f i / r n  

Again, the left side is approximately standard normal and the Type I1 error rate 

- (AL  - U )  + k~ -z,+ = zp - 
( U / J ; ; ) / i X '  

Subtracting (14) from (1 1) yields 

or 

Substituting (12) into the denominator on the right side of (16) yields 

Squaring both sides of (1 7) and solving for n yields equation (8). 
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APPENDIX D 

GLOSSARY OF TERMS 

action level: the numerical value that causes the decision maker to choose one of the 
alternative actions (e.g., compliance or noncompliance). It may be a regulatory 
threshold standard, such as a Maximum Contaminant Level for drinking water; a risk- 
based concentration level; a technological limitation; or a reference-based standard. 
[Note: the action level is specified during the planning phase of a data collection 
activity; it is not calculated from the sampling data.] 

alternative hypothesis: See hypothesis. 

bias: the systematic or persistent distortion of a measurement process which causes errors in 
one direction (i.e., the expected sample measurement is different than the sample's 
true value). 

boundaries: the spatial and temporal conditions and practical constraints under which 
environmental data are collected. Boundaries specify the area or volume (spatial 
boundary) and the time period (temporal boundary) to which the decision will apply. 
Samples are then collected within these boundaries. 

data collection design: A data collection design specifies the configuration of the 
environmental monitoring effort to satisfy the DQOs. It includes the types of samples 
or monitoring information to be collected; where, when, and under what conditions 
they should be collected; what variables are to be measured; and the Quality 
Assurance and Quality Control (QNQC) components that ensure acceptable sampling 
design error and measurement error to meet the decision error rates specified in the 
DQOs. The data collection design is the principal part of the QAPP. 

Data Quality Assessment OQA) Process: a statistical and scientific evaluation of the data 
set to assess the validity and performance of the data collection design and statistical 
test, and to establish whether a data set is adequate for its intended use. 

Data Quality Objectives (DQOs): Qualitative and quantitative statements derived from the 
DQO Process that clarify study objectives, define the appropriate type of data, and 
specify the tolerable levels of potential decision errors that will be used as the basis 
for establishing the quality and quantity of data needed to support decisions. 

Data Quality Objectives Process: a Quality Management tool based on the Scientific 
Method, developed by the U.S. Environmental Protection Agency to facilitate the 
planning of environmental data collection activities. The DQO Process enables 
planners to focus their planning efforts by specifying the intended use of the data (the 
decision), the decision criteria (action level), and the decision maker's tolerable 
decision error rates. The products of the DQO Process are the DQOs. 
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decision error: an error made when drawing an inference from data in the context of 
hypothesis testing, such that variability or bias in the data mislead the decision maker 
to draw a conclusion that is inconsistent with the true or actual state of the population 
under study. See also false negative decision error, false positive decision error. 

defensible: the ability to withstand any reasonable challenge related to the veracity, integrity, 
or quality of the logical, technical, or scientific approach taken in a decision making 
process. 

false negative decision error: a false negative decision error occurs when the decision 
maker does not reject the null hypothesis when the null hypothesis actually is false. 
In statistical terminology, a false negative decision error is also called a Type I1 errbr. 
The measure of the size of the error is expressed as a probability, usually referred to 
as "beta ( p)"; this probability is also called the complement of power. 

false positive decision error: a false positive decision error occurs when a decision maker 
rejects the null hypothesis when the null hypothesis actually is true. In statistical 
terminology, a false positive decision error is also called a Type I error. The measure 
of the size of the error is expressed as a probability, usually referred to as "alpha ( 
the "level of significance," or "size of the critical region." 

a)," 

gray region: a range of values of the population parameter of interest (such as mean 
contaminant concentration) where the consequences of making a decision error are 
relatively minor. The gray region is bounded on one side by the action level. 

hypothesis: a tentative assumption made to draw out and test its logical or empirical 
consequences. In hypothesis testing, the hypothesis is labeled "null'' or "alternative", 
depending on the decision maker's concerns for making a decision error. 

limits on decision errors: the tolerable decision error probabilities established by the 
decision maker. Potential economic, health, ecological, political, and social 
consequences of decision errors should be considered when setting the limits. 

mean: (i) a measure of central tendency of the population (population mean), or (ii) the 
arithmetic average of a set of values (sample mean). 

\ 

measurement error: the difference between the true or actual state and that which is 
reported from measurements. 

median: the middle value for an ordered set of n values; represented by the central value 
when n is odd or by the average of the two most central values when n is even. The 
median is the 50th percentile. 

medium: a substance (e.g., air, water, soil) which serves as a carrier of the analytes of 
interest. 
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I- 
natural variability: the variability that is inherent or natural to the media, objects, or people ' 

being studied. 

null hypothesis: See hypothesis. 

parameter: a numerical descriptive measure of a population. 

percentile: the specific value of a distribution that divides the distribution such that p 
percent of the distribution is equal to or below that value. Example for p=95: "The 
95th percentile is X" means that 95% of the values in the population (or statistical 
sample) are less than or equal to X. 

planning team: the group of people that will carry out the DQO Process. Members include 
the decision maker (senior manager), representatives of other data users, senior 
program and technical staff, someone with statistical expertise, and a QNQC advisor 
(such as a QA Manager). 

population: the total collection of objects, media, or people to be studied and from which a 
sample is to be drawn. 

power function: the probability of rejecting the null hypothesis (H .) over the range of 
possible population parameter values. The power function is used to assess the 
goodness of a hypothesis test or to compare two competing tests. 

quality assurance (QA): an integrated system of management activities involving planning, 
quality control, quality assessment, reporting, and quality improvement to ensure that a 
product or service (e.g., environmental data) meets defined standards of quality with a 
stated level of confidence. 

Quality Assurance Project Plan (QAPP): a formal technical document containing the 
detailed QA, QC and other technical procedures for assuring the quality of 
environmental data prepared for each EPA environmental data collection activity and 
approved prior to collecting the data. ' .  . 

quality control (QC): the overall system of technical activities that measures the attributes 
and performance of a process, item, or service against defined standards to verify that 
they meet the stated requirements established by the customer. 

Quality Management Plan (QMP): a formal document describing the management policies, 
objectives, principles, organizational authority, responsibilities, accountability, and 
implementation protocols of an agency, organization, or laboratory for ensuring quality 
in its products and utility to its users. In EPA, QMPs are submitted to the Quality 
Assurance Management Staff (QAMS) for approval. 

range: the numerical difference between the minimum and maximum of a set of values. 
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'sample: a single item or specimen from a larger whole or group, such as any single sample 
of any medium (air, water, soil, etc.). 

'sample: a set of individual samples (specimens or readings), drawn from a population, 
whose properties are studied to gain information about the whole. 

sampling: the process of obtaining representative samples andor measurements of a subset 
of a population. 

sampling design error: the error due to observing only a limited number of the total 
possible values that make up the population being studied. It should be distinguished 
from errors due to imperfect selection; bias in response; and errors of observation, 
measurement, or recording, etc. 

scientific method: the principles and processes regarded as necessary for scientific 
investigation, including rules for concept or hypothesis formulation, conduct of 
experiments, and validation of hypotheses by analysis of observations. 

standard deviation: the square root of the variance. 

statistic: a function of the sample measurements; e.g., the sample mean or standard 
deviation. 

statistical test: any statistical method that is used to determine which of several hypotheses 
are true. 

total study error: the combination of sampling design error and measurement error. 

true: being in accord with the actual state of affairs. 

Type I error: A Type I error occurs when a decision maker rejects the null hypothesis when 
it is actually true. See false positive decision error. 

Type I1 error: A Type I1 error occurs when the decision maker fails to reject the null 
hypothesis when it is actually false. See false negative decision error. 

variable: The attribute of the environment that is indeterminant. 

variance: a measure of (i) the variability or dispersion in a population (population variance), 
or (ii) the sum of the squared deviations of the measurements about their mean divided 
by the degrees of freedom (sample variance). 
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